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Abstract  

 

The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric 

greenhouse gases and  aerosols, and the estimation of the aerosol-induced direct longwave (LW) 

radiative forcing in the spectral region 5-20 µm at the Earth’s surface (BOA; bottom of the 

atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions.  These 

objectives were accomplished by conducting case studies on clear sky, smoky, and dusty 

conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR 

measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of 

the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer 

(DISORT) solver were employed for the study. The LW aerosol forcing is often not included in 

climate models because the aerosol effect on the LW is often assumed to be negligible. We lack 

knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high 

variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly 

associated with small biomass burning smoke particles, is + 0.4 W/m
2
 which seems to be small, 

but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth’s 

atmosphere since the preindustrial era of 1750 (+ 1.6 W/m
2
). The LW radiative forcing due to 

coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as 

much as + 5.02 W/m
2
 at the surface and + 1.71 W/m

2
 at the TOA.  All of these significant 

positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the 

aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling 

effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the 

meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size 

and complex refractive indices of the aerosol constituents.  
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We have also demonstrated that LW aerosol radiative forcing is somewhat sensitive to the water 

vapor content in the atmosphere, and increases with the dryness of the atmosphere. This evidence 

supports our argument that the Great Basin area of the USA, which usually has extremely dry 

atmospheric conditions, can be an appropriate place to study the dry-desert aerosol climate 

forcing in a regional scale. 

An analysis of aerosol IR backscattering shows that the effect significantly contributes to both the 

BOA and TOA IR forcings, even if the aerosols do not exhibit absorption at all in the thermal IR. 

The general LW radiative forcing is, therefore, associated with both the absorption and scattering 

effects of the aerosols. Neglecting LW scattering will result in an underestimation of LW 

radiative forcing by aerosols. 

Finally, the discrepancy between the FTIR-observed and modeled radiance with aerosols 

indicates a significant uncertainty, which demands further research on the LW optical properties 

of fine and coarse mode aerosol. 
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1 INTRODUCTION 

1.1 General overview of infrared and aerosol issues 

Electromagnetic radiation is the vital player in the Earth’s radiative energy budget. Radiation is 

broadly categorized into two portions, shortwave (solar) and longwave (terrestrial) radiation. The 

shortwave (SW) radiation lies in the wavelength range 0.1-4 μm and longwave (LW) in the range 

4-100 μm. The latter is also referred to as thermal infrared (IR). Over 99% of the radiative energy 

emitted by the sun (6000 K) that is incident on the top of the Earth’s atmosphere (TOA) lies in 

the SW band. On the other hand, over 99% of the radiative energy emitted by the Earth-

atmosphere system (280 K) lies in the LW band (Petty 2006). The Earth’s surface and atmosphere 

absorb both the SW and LW radiation, but emits only LW radiation. Trace gases in the 

atmosphere such as CO2, H2O, CH4, and O3 which are called greenhouse gases, mainly absorb 

and emit in the LW region. Atmospheric particles such as clouds and aerosols absorb and scatter 

both LW and SW radiation, but emit only LW radiation. 

Aerosols are tiny solid or liquid particles suspended in the air, which typically range in size from 

a few nanometers (nm) to tens of micrometers (µm) in diameter (Seinfeld and Pandis 2006). 

Examples of aerosols include airborne mineral dust, biomass burning smoke, soot, ashes, sulfates, 

nitrates, etc. The fine mode aerosol particles such as biomass burning smoke, soot and pollution 

have sizes less than 1 µm and the coarse mode aerosols such as sea-salts and mineral dust have 

sizes greater than 1 µm. The coarse mode particles have substantial influence on the radiative 

fluxes in the LW spectral domain. 

The balance between the incoming SW radiation absorbed by the Earth’s surface and the 

atmosphere and the outgoing LW radiation from the atmosphere determine the surface radiative 

energy budget. For example the net flux      at the Earth’s surface is given by 

     (      )  (       )  (1.1) 
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where    ,    , and     are the incoming SW radiative flux, downwelling LW radiative flux, and 

upwelling LW radiative flux, respectively, and A is the Earth’s surface albedo. The radiative 

fluxes     and     depend on the amount of greenhouse gases, clouds, and aerosols present in the 

atmosphere.     further strongly depends on the temperature and emissivity of the Earth’s 

surface. Owing to invariability (in terms of structure, composition, and concentration) of the 

greenhouse gases over time and space, their contribution to the LW fluxes are reasonably well 

known (Raymond et al. 2009). On the contrary, the contribution of the atmospheric aerosols to 

the total LW fluxes possesses significant uncertainties due to their highly variable properties (Ge 

et al. 2010). According to Inter-governmental Panel on Climate Change (IPCC) 2013 report, 

atmospheric aerosols contribute the largest uncertainty to the estimate of the Earth’s changing 

energy budget, the balance between the incoming solar and outgoing infrared (thermal) radiation 

from the Earth-atmosphere system. In this dissertation, we use the term ‘aerosol radiative forcing’ 

to indicate the difference of fluxes with and without aerosol. 

 Despite the fact that aerosols can have a large impact on the LW radiative fluxes, aerosol 

radiative forcing in the LW is not generally included in many climate models (Vogelmann et al. 

2003). Though some regional and global scale climate models consider the aerosol radiative 

effect in the LW spectral domain, only the absorption is taken into account while scattering is still 

neglected (Dufresne et al. 2002). The large, highly scattering and absorbing aerosols in the LW 

region can influence local climate features, as well as the global radiation budget (Tegen et al. 

1996). Due to a lack of enough knowledge of the LW aerosol properties and difficulties to 

accurately parameterize the aerosol model, very few studies have been done on aerosol LW 

radiative forcing (Sicard et al. 2014). Since aerosol LW radiative effect is assumed to be 

negligible and it involves many uncertainties, most of the works on aerosol radiative forcing have 

been limited to the SW spectral domain (Markowicz et al.  2003). Even though radiative forcing 

of the fine mode aerosols is usually small in the LW as compared to their forcing in the SW, 
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strongly absorbing and scattering coarse mode aerosols have a significant forcing in the LW 

(Fouquart et al. 1987). 

 These illustrations motivated us to study the LW radiative effect of the aerosols. The primary 

objectives of this research are two-fold: to study the optical properties of the aerosols such as 

biomass burning smoke and mineral desert dust particles, and to quantify their LW radiative 

forcing in the thermal IR radiation (5-20 μm). Reno, located at 39.527°N and 119.822° W, in the 

Great Basin of the USA, observed a big biomass burning smoke aerosol from the California Rim 

Fire in August 2013, and an episode of a large dust outbreak on 24 April 2013. We argue that the 

dry-desert area of the Great Basin can be an appropriate place for studying the aerosol radiative 

forcing due to three reasons: First, the Great Basin observes coarse mode particles almost every 

day and these particles offer non-negligible LW radiative forcing. Dust consists of the major 

portion of aerosol mass loading, particularly, in near deserts and arid/semi-arid areas (Yang et al. 

2007). Second, this area occasionally observes heavy smoke from California wildfires and dust 

storms during summer and late spring due to its hot and dry conditions. Third, a higher relative 

humidity can modify the size distribution and refractive index of both water soluble and insoluble 

components of aerosols: water soluble constituents may undergo particle growth and 

transformation to an aqueous solution, while water insoluble constituents undergo coating with 

liquid water or aqueous solution of any soluble components. Due to these effects, the aerosol 

optical properties (extinction efficiency, single scatter albedo, asymmetry parameter, etc.) and 

hence the radiative properties (radiative flux) depend significantly on relative humidity (Lubin et 

al. 2002). Thus taking account of the effect of humidity causes the modeling of the aerosols to 

become more complex, difficult, as well as erroneous. Also, the radiative forcing of the aerosols 

is stronger in the drier atmosphere (Liao and Seinfeld 1998). These facts imply that the dry 

atmospheric condition of the Great Basin can be highly favorable for characterizing the radiative 

properties of dry-aerosols. 
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 We also present an analysis on the aerosol backscatter of the thermal IR and its influence on the 

radiative forcing. Such an effect is not yet widely accepted by climate scientists as being 

important in the thermal IR region. 

1.2 Organization of dissertation 

The dissertation is structured as follows: Chapter 2 presents the theoretical analysis of aerosol 

microphysical and optical properties. Chapter 3 describes the instruments and experimental 

techniques. Radiative transfer models are discussed in Chapter 4. Case studies for dry and clear 

sky, and smoky and dusty atmospheres are presented in Chapters 5 through 7. The final Chapter 

presents overall discussion, conclusions, and suggestions for future work.  
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2 THEORETICAL ANALYSES OF AEROSOL MICROPHYSICAL AND OPTICAL 

PROPERTIES 

2.1 Size distribution function 

The size of particles in the atmosphere usually spans a wide range, which results in a large 

standard deviation in the normal (Gaussian) distribution for fit of the observed particle sizes. 

Aerosol size distributions are represented by a normal distribution of the logarithm of the particle 

radii, called lognormal distribution, in which the natural logarithm of radii is normally distributed 

(Levoni et al. 1997). The lognormal columnar volume size distribution function 
  ( )

     
  is given by 

(Schuster et al. 2006) 

  ( )

     
 

 

√  

 

    
   ⌈ 

(         ) 

 (   ) 
⌉,  (2.1) 

where C represents the column volume of all particles per cross-section of atmospheric column 

which is obtained by integrating  
  ( )

     
 over all sizes i.e. 

   ∫
  ( )

     
    

    

    
. (2.2) 

This parameter C controls the overall scaling of the distribution. The quantity 
  ( )

     
  is normalized 

if C = 1.0.     is the volume median, or modal radius; half the particles are smaller and half larger 

than   . The modal radius is the radius of maximum frequency of the distribution. The median 

and modal radii are identical for lognormal distributions. S is called the geometric standard 

deviation, which is related to the standard deviation σ of the natural logarithm of the radius lnr 

(i.e. the radius in log space) by     . The dimensionless quantity S gives the spread (or width) 

of the distribution. The parameters rm and S are constants for a given size distribution. The values 

of S (must be ≥ 1) lie in the range 1.5-2.5 for realistic atmospheric aerosols (Zender 2010). For 

monodisperse particles, S ≈ 1. The factor √   on the denominator comes from the normalization 
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property of the Gaussian function i.e., ∫    ( 
  

 
)

  

  
   √   . The common units for the 

volume distribution dV/dlnr are µm
3
 µm

-2
. The reason behind the use of volume concentration is 

that the optical effects of atmospheric aerosols are more related to their volume rather than their 

number (Whitby 1978).  

The columnar particle number size distribution n(r) in the units of number of particles per unit 

area per size interval in the whole atmosphere column is given by 

 ( )  ∫  (   )  
 

 
, (2.3) 

where  (   ) is the local number concentration (number per unit volume) per size interval. 

Assuming spherical particles, we have 

                     

           
 ∫

  ( )

    

    

    
      ∫

 

 
    ( )   ∫

 

 
 
  ( )

    
   

    

    

    

    
.  (2.4) 

Hence,  ( ) is related to the volume size distribution observed by an AERONET Cimel sun-

photometer as (Sayer et al. 2012) 

 ( )  
 

    

  ( )

    
. (2.5) 

Eq. 2.5 is used to integrate the individual particle single scattering properties derived from the 

Mie theory for spherical homogeneous particles (Bohren and Hoffman 1983), or other for non-

spherical particles. 

 Fig. 2.1 depicts examples of measured aerosol bimodal lognormal volume size distributions at 

the University of Nevada, Reno (UNR), which consist of fine and coarse mode aerosols. The 

bimodal size distribution can be given by a linear combination of two lognormal functions given 
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by Eq. 2.1 for fine and coarse modes. Fig. 2.1 (left) is a size distribution for a smoke event in 

Reno on 26 August 2013 at 17:00 Local Standard Time (LST) measured with AERONET 

(aerosol robotic network) Cimel sun-photometer. The strong predominance of the fine mode 

implies the presence of small smoke particles. Fig. 2.1 (right) is the aerosol size distribution 

derived from the MFRSR (multi-filter rotating shadow-band radiometer) data on 24 April 2013 at 

14:29 LST during a dust-storm event in Reno. The strong predominating feature of the coarse 

mode particles over fine (or accumulation) mode is a typical characteristic of a dust outbreak 

episode (Sicard et al. 2014). The volumetric parameters such as volume median radius, standard 

deviation and volume concentration for each mode of both dates are reported in Table 2.1. The 

values of the standard deviation are taken to be 0.42 and 0.61 for the fine and coarse modes, 

respectively (Dubovik et al. 2002). For the smoke event, the ratio of fine to coarse volume 

concentration was 10.0, and for the dust event, the coarse to fine volume concentration ratio was 

5.3. 

        

Figure 2.1 Bimodal lognormal aerosol size distributions observed in Reno: (left) during the 

Rim fire on 26 August 2013 at 17:00 LST measured with the AERONET Cimel sun-

photometer and (right) during a dust storm on 24 April 2013 at 14:29 LST derived from the 

MFRSR data.        
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 Table 2.1 Size distribution function parameters for the Rim fire and dust cases 

Particle mode Concentration (µm
3
 µm

-2
) Median radius (µm) Standard deviation 

Coarse 

26 August 2013 

24 April 2013 

 

0.015 

0.088 

 

2.734 

2.772 

 

0.61 

0.61 

Fine 

26 August 2013 

24 April 2013 

 

0.151 

0.016 

 

0.169 

0.196 

 

0.42 

0.42 

 

2.2 Spectral bulk scattering properties 

For a given size distribution n(r), the bulk (or mean) scattering properties at a specific 

wavenumber    are obtained by integrating the single scattering properties for individual particles 

over particle size distribution as follows (Yang et al. 2005; Baum et al. 2006): 

〈    ( )〉  
∫     (   ) ( ) ( )  

    
    

∫  ( ) ( )  
    
    

,  (2.6) 

〈    ( )〉  
∫     (   ) ( ) ( )  

    
    

∫  ( ) ( )  
    
    

, (2.7) 

〈    ( )〉  〈    ( )〉  〈    ( )〉,  (2.8) 

〈 ( )〉  
〈    ( )〉

〈    ( )〉
 ,  (2.9) 

〈 ( )〉  
∫  (   )    (   ) ( ) ( )  

    
    

∫     (   ) ( ) ( )  
    
    

 , (2.10) 

     
 

 

∫  ( ) ( )  
    
    

∫  ( ) ( )  
    
    

 , (2.11) 
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where 〈    ( )〉, 〈    ( )〉, 〈    ( )〉, 〈 ( )〉, and 〈 ( )〉 are the mean extinction efficiency, 

scattering efficiency, absorption efficiency, single scatter albedo, and asymmetry parameter, 

respectively. The term reff is the effective particle radius, or the area-weighted mean radius of an 

aerosol distribution which characterizes the radiation extinction properties of the distribution. 

V(r) is the volume of the individual particles and A(r) is the geometric projected area of a particle 

perpendicular to the incident plane. Similarly,     (   ),     (   ), and     (   ) are the 

extinction, scattering and absorption efficiencies, respectively, for the individual particles at a 

specific wavenumber. These quantities are computed using the Mie theory (which is described 

shortly in brief). The scattering asymmetry parameter is defined as the average value of the cosine 

of the scattered angle, weighted by the intensity of the scattered radiation as a function of angle. 

Its value is 1 for perfect forward scattering, -1 for perfect backscatter, and 0 for isotropic 

scattering. 

The scattering phase function 〈 (   )〉 specifies the fraction of radiation scattered in a certain 

direction which is given by 

〈 (   )〉   
∫  (     )    (   ) ( ) ( )  

    
    

∫     (   ) ( ) ( )  
    
    

. (2.12) 

The Henyey-Greenstein (H-G) phase function is the most widely used ‘model’ phase function, 

and is given by (Petty 2006) 

    (   )  
  〈 〉 

(  〈 〉   〈 〉    )
 
 

 , (2.13) 

where   is the angle between the original direction of the incident photon    and the scattered 

direction  , such that           . This function is isotropic for g = 0. For g > 0, the function 

can reproduce the observed forward peak in the phase functions of real particles. 
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The parameters     ,     ,     , and g for  a single homogeneous sphere is obtained from the 

Mie theory in the form of an infinite series (Hansen and Travis 1974): 

     
 

   ∑ (    )   (     )
 
   ,  (2.14) 

     
 

   ∑ (    ) (    
      

 ) 
   ,  (2.15) 

              ,  (2.16) 

  
 

      
 ∑ [

 (   )

(   )
    (      

        
 )  

(    )

 (   )
  (    

 )] 
   .  (2.17) 

The heart of the Mie scattering problem lies in the computation of coefficients    and   , which 

are functions of the size parameter x (        
   

 
                                 ) and the 

complex refractive index, and involve spherical Bessel functions. The series converges whenever 

the number of terms j in the series is slightly larger than x, i.e., j is an integer closest to  (  

  
 

   ) (Petty 2006). Higher order terms correspond to light rays missing the sphere. The 

infinite series actually represents the multipole expansion of the scattered light. The coefficients 

   specify the amounts of electric multipole radiation whereas    specify the magnetic multipole 

radiation. For small particles with a small refractive index, only the electric dipole radiation is 

significant, and Rayleigh scattering takes place. Fig. 2.2 illustrates the asymmetry parameter for 

Rayleigh and Mie scatterings. For large particles all multipoles with j ≤  x contribute. For much 

larger particles, usually x > 2000, computation of the Mie theory suffers both a computer-time 

issue and a numerical precision issue due to round-off errors as a consequence of the large value 

of j. 
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Figure 2.2 Illustration of the phase function for various values of the asymmetry parameter 

(courtesy: D. Mitchell). 

 

2.3 Physical characteristics of the aerosol problem 

This section presents a simple idea about the physical characteristics of the aerosols such as total 

volume of the aerosols per unit area of the atmospheric column above an instrument. Assume an 

aerosol-laden atmosphere of volume V observed by an instrument at the surface, whose area is A 

and height is Z as shown in Fig. 2.3 (left). 

                                                             

Figure 2.3 Aerosol-laden atmosphere above an instrument at the surface: aerosols 

distributed over the whole column of the atmosphere (left) and a cube representing the total 

volume of the aerosols in a unit area (A=1 m
2
) of the atmosphere (right). 
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Referring to the fine mode concentration on 26 August 2013 (Table 2.1), we know that the total 

volume of all the aerosols present in a column of atmosphere of 1 µm
2
 area is 0.151 µm

3
, which is 

equivalent to the volume of 151 mm
3
 in an area of 1 m

2
. This is, in fact, the volume of all aerosol 

particles when gathering them together in an area of a unit square meter (Fig. 2.3, right, where A 

is assumed to be 1 m
2
). This volume then represents a cube of side 5.3 mm in this particular case. 

Is it not a tiny volume of matter dispersed into the whole column of the atmosphere, which we are 

dealing with?  

2.4 Pedagogical model for IR radiative forcing by aerosols  

We consider a simplified atmosphere containing water vapor and coarse mode aerosols such as 

mineral dust (Fig. 2.4) where dust resides only in the boundary layer (0-3 km). Let T be the 

surface temperature and    be the atmospheric temperature. 

 

Figure 2.4 A simplified atmosphere containing water vapor and coarse mode aerosols. 

 

The radiance at the TOA is given by 

    ( )    (   )    [ (    
   

     
    )]   (    )[     { (    

   
     

    )}]  

                          ( )     
    (

   

 
)    (     

   
), (2.18) 
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where   is the wavenumber; B is the Planck’s function;     
   

 is the absorption optical depth of 

water vapor;     
     ,     

    , and     
     are the extinction, absorption and scattering optical depths, 

respectively of coarse mode aerosol such as dust; and (
   

 
) represents the probability of 

scattering in the forward direction. Similarly the radiance at the BOA is given by 

    ( )   (    )[     { (    
   

     
    )}]   ( )     

    (
   

 
)    (     

   
), (2.19) 

where (
   

 
) represents the probability for backward scattering. The second term in Eq. 2.19, 

therefore, signifies the surface IR backscattering by atmospheric dust. 

The spectral radiative forcing at the TOA,      ( )  is obtained by subtracting     ( ) with 

dust from     ( ) without dust. Therefore, 

     ( )   ( )    (     
   

)[      (     
    )]   (  )    (     

   
)[     (     

    )]  

 ( )     
    (

   

 
)    (     

   
).  (2.20) 

Assuming     
     and     

     are far less than 1, then Eq. 2.20 can be written as 

     ( )     (     
   

)[ ( )     
      (  )     

    ]   ( )     
    (

   

 
)    (     

   
). (2.21) 

Using   
    
    

    
     i.e., single scattering albedo, we have 

     ( )     (     
   

) [ ( )     
     {  

 (   )

 
}   (  )     

    ]. (2.22) 

In the limit,    , i.e., zero scattering approximation 

     ( )      
        (     

   
)[ ( )   (  )].  (2.23) 

We see that, for a large value of     
   

 (i.e. moist atmosphere), the dust radiative forcing at the 

TOA,      ( ) becomes small. Also, the forcing decreases with increasing atmospheric 

temperature   .  In the limit,     i.e., zero absorption approximation 

     ( )     (     
   

)  ( ) (
   

 
)     

    .  (2.24) 
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Apparently the backscattering of the surface-emitted IR by the dust causes the radiative 

forcing to be important. If      ( )   , less IR leaves at TOA in the presence of dust and 

hence the atmosphere gets heated. Using     
     (   )    

    , Eq. 2.22 can be re-written 

generally as 

     ( )   ( )     
        (     

   
) [  

 (   )

 
 (   )

 (  )

 ( )
].  (2.25) 

The spectral radiative forcing at the BOA,      ( ) due to dust is obtained by subtracting 

    ( ) without dust from     ( ) with dust i.e. 

     ( )   (  )    (     
   

)[     { (   )     
    }]   ( )          

    (
   

 
)     (     

   
). 

Assuming small     
     , we have 

     ( )   ( )     
        (     

   
) [ (

   

 
)  (   )

 (  )

 ( )
].  (2.26) 

Notice that  
 (  )

 ( )
 

  
 

  , and 
  

 

   (  
  

 
)
 

    
  

 
. Then 

     ( )     ( )     
        (     

   
) [ (

   

 
)  (   ) (   

  

 
)]. (2.27) 

For the zero aerosol absorption and emission case,    ,  

     ( )   ( )     
        (     

   
) (

   

 
).  (2.28) 

Even though the dust aerosols do not absorb IR at all, the backscattering of IR by the aerosols 

contributes to IR radiative forcing. Also, the aerosol IR radiative forcing enhances in the drier 

atmosphere. This offers positive feedback on the climate warming. For a warmer planet,  ( ) 

goes up and contributes to the positive feedback.  For    ,  

       ( )   (  )     
        (     

   
).  (2.29) 

Eq. 2.29 is the zero scattering approximation, which can be used to investigate the perturbation 

due to any other greenhouse gas. The approximate forcings given in Eqs. 2.25 and 2.26 were also 

presented by Dufresne et al. 2002, though without the dependence on water vapor optical depth.  
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3 INSTRUMENTS AND EXPERIMENTAL TECHNIQUES  

3.1 Fourier Transform Infrared Spectrometer 

Downwelling thermal IR emission spectra of the atmosphere are measured using a passive, 

ground-based Fourier transform infrared (FTIR) spectrometer (Fig. 3.1)  at a spectral range of 

500-2000 cm
-1

 (5-20 µm), with a narrow field-of-view (45 mrad, full angle) at 0° to zenith. The 

instrument uses a commercial Michelson interferometer (Model MB 100) manufactured by 

Bomem, Inc., (Quebec, Canada). It contains a liquid-nitrogen-cooled, narrow band Mercury-

Cadmium-Telluride (MCT; HgCdTe) detector, which is sensitive to LW radiation from 5-20 µm. 

A rotating gold-plated scene mirror is used to direct the emission from each target: blackbodies 

and sky, into the interferometer. The instrument measures interferogram (a unique type of signal, 

which has all of the IR frequencies encoded into it), from which complex radiance spectra are 

computed using Fourier transforms. The complex spectra from the two high-emissivity, well-

characterized blackbodies at known temperatures are used to calibrate the atmospheric spectrum. 

The two blackbodies are identically designed, with one kept at about 50°C while the other is 

allowed to cool down to -10°C. More details on the construction and specifications of the 

spectrometer, including calibration procedure, are provided by Adhikari 2012. We provide that 

the instrument has good radiometric calibration.                                                                                                               

                             

Figure 3.1 Fourier transform infrared (FTIR) spectrometer (left) and the exterior of a 

conical high-emissivity blackbody calibration target (right). 
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The FTIR was installed in the observatory of the four-story physics building at UNR. 

Measurements were initiated only under cloud-free conditions to study aerosol effects. The 

instrument was exposed to the external environment for about an hour allowing the IR source and 

the spectrometer temperature to stabilize after turning the power on. The spectrometer was 

operated in the emission mode at a resolution of 1 cm
-1

 over a range of 500-2000 cm
-1 

and pre-

amplifier gain at 16 . 

The measurement sequence typically consisted of viewing the cold calibration target (≈ -10°C), 

then viewing the hot target (≈ 50C), and finally the atmosphere, each for 20 scans of the 

interferometer, resulting in an approximate 8-min temporal resolution. The calibration spectra 

from just before and after each atmospheric observation were used to calibrate the atmospheric 

emission spectra and to reduce the possible temperature drifts. For making the analysis of the 

spectra convenient, we measured radiance and the corresponding spectrally resolved brightness 

temperature obtained from the inverse of Planck’s blackbody function. We chose 00:00 and 12:00 

Coordinated Universal Time (UTC) hours of the days to measure the FTIR spectra as the 

radiosonde from the National Weather Service in Reno was launched during the periods. Using 

the same hours of the day provide appropriate profiles of atmospheric temperature, pressure, and 

dew point to model the observed spectra. 

 Fig. 3.2 shows the typical clear sky radiance and brightness spectra computed from the FTIR 

spectrometer for 01 August 2013 at 17:00 LST. Each cloud-free spectrum includes the collective 

downwelling emissions from the greenhouse gases and aerosols. 
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Figure 3.2 Typical examples of clear sky radiance (left) and brightness temperature (right) 

spectra observed with FTIR at UNR on 01 August 2013 at 17:00 LST. A radiance unit (RU) 

is 1 mW/(m
2
 Sr cm

-1
). Radiance spectra are converted into brightness temperature spectra 

using an inverse Planck function in the wavenumber domain (Adhikari 2012). 

 

3.2 AERONET Cimel sun-photometer 

The Aerosol Robotic Network (AERONET) Cimel sun-photometer (Fig. 3.3) is an automated, 

solar-powered, ground-based, and passive sun photometer which is used for characterization and 

quantification of the atmospheric aerosols in a vertical column, and air quality monitoring 

purpose. The Cimel sun-photometer is installed outside on the roof of the four-story physics 

department building at UNR. The instrument is part of NASA’s AERONET. 

 

Figure 3.3 Cimel CE-318 sun-photometer. 
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The instrument measures both the direct-beam solar/aureole and diffuse sky radiances at multiple 

wavelengths ranging from the ultra-violet (UV) through near-infrared (NIR): 0.34, 0.38, 0.44, 

0.50, 0. 67, 0.87, 1.02 and 1.64 µm at a narrow full angle field of view of 1.2° with two filtered 

detectors: silicon photodiode for the UV and visible wavelengths, and Indium-Gallium-Arsenide 

(lnGaAS) for the NIR wavelengths (Holben et al. 1998). These detectors are fitted on the two 33 

cm collimators. 

The sky radiance observations are made in the almucantar (or horizontal) and principal (or 

vertical) plane. The almucantar measurement is made at constant zenith angle and airmass where 

as the principal plane measurement is made in the principal plane of the sun where the angular 

distances from the sun are scattering angles regardless of the zenith angle. The instrument 

provides the cloud-screened observations of columnar spectral aerosol optical depth (AOD) and 

water vapor column content at a temporal resolution of about 10-15 min (Sayer et al. 2013). The 

aerosol microphysical properties such as volume size distribution (in 22 logarithmically-spaced 

bins with radii from 0.05-15 µm) and spectral complex refractive index, and optical properties 

such as single scatter albedo, asymmetry parameter, and scattering phase functions are retrieved 

using an inversion algorithm developed by Dubovik and King 2000 and Dubovik et al. 2006, for 

spherical and non-spherical particles, respectively. 

The aerosol optical depth is obtained from the Lambert-Beer law, 

 ( )    ( )    (  ( )  ),  (3.1) 

where  ( )  [       ( )           ( )              ( )        ( )] is the total vertical 

atmospheric optical depth at a given wavelength λ,   ( ) is the solar irradiance at the top of the 

atmosphere, and  ( ) is the direct-sun irradiance measured by the instrument at the ground. The 

term ‘gases’ generally refers to Rayleigh scattering by the air molecules such as N2, O2, etc., in 

this analysis. The quantity µ is given by        where   is the solar zenith angle measured with 

respect to vertical, which is calculated internally based on the time, and longitude and latitude of 
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the observation station. The relation        holds as long as the sun is fairly high in the sky 

i.e.,   ≤ 70°; otherwise a modified expression should be used to account for the curvature of the 

Earth (Kasten and Young 1989) 

  [             (          )       ].  (3.2) 

 The reciprocal of µ is referred to as optical airmass factor (dimensionless quantity) which 

represents the optical path length and describes the enhancement of the slant path over the 

vertical for which air-mass factor is one. The airmass factor is, therefore, close to one at noon and 

as large as 57 during sun-rise and sun-set. 

 Eq. 3.1 can be changed into linear form by taking natural logarithms on both sides. The slope and 

y-intercept of the  ( ) versus 1/   plot give    and   ( ), respectively (Petty 2006, Eq. 7.39,). 

This procedure is called Langley linear regression analysis. The quantity         is approximated 

using the Rayleigh optical depth formula given by Hansen and Travis 1974: 

      ( )          (
 

   
      

   
       

  ) 
 

  
,  (3.3) 

 where P and P0 stand for the pressure at the measurement site and the pressure at the sea level   

(i.e. 1013.24 mbar), respectively, and λ is in µm. The subtraction of 

[       ( )              ( )         ( )]  from  ( ) yields            at a specific wavelength. 

The aerosol microphysical properties are derived through the inversion of spectral sky radiance at 

known angular distance from the sun.  

Cimel sun-photometer is a wide-spread (more than 600 instruments operating around the world) 

and scientifically validated instrument. It is extremely sensitive, low-noise, and resistant to 

changes in temperature and harsh atmospheric condition. Motor-driven filters wheel positions 

each of the filters in turn.  The instrument details and operation can be found at 

http://www.arm.gov/publications/tech_reports/handbooks/csphot_handbook.pdf?id=79. 

http://www.arm.gov/publications/tech_reports/handbooks/csphot_handbook.pdf?id=79
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 Figs. 3.4 and 3.5 are measurements and inversion products of Cimel sun-photometer at the UNR 

station. Cimel measured the high AOD at each channel (Fig. 3.4; top panel) due to the presence of 

smoke aerosols from the California Rim fire on 26 August 2013 in the atmosphere over Reno. 

The AODs are larger for shorter wavelengths than for longer wavelengths. The size distribution 

plot (Fig. 3.4; bottom panel) shows the predominance of fine mode particles over coarse mode 

particles on the smoky day.  

 

 

Figure 3.4 Cimel-observed time series spectral AOD (top) and size distribution (bottom) 

plots for 26 August 2013 in Reno. 
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Figure 3.5 Cimel-observed spectral single scatter albedo (top) and asymmetry parameter 

(bottom) for 26 August 2013 in Reno. 

 

 

The single scatter albedo (SSA) plot (Fig. 3.5; top panel) shows the variation of SSA with 

wavelength at different periods of the day 26 August 2013. The SSA usually decreases with 

increase in wavelength. This is because the fine mode scattering declines with increase in 

wavelength. We see a similar trend for the asymmetry parameter (or factor) (Fig. 3.5; bottom 

panel) as SSA. Shorter wavelengths are scattered more in the forward direction by the given 

particle size. 
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3.3 Multi-filter rotating shadow-band radiometer 

The multi-filter rotating shadow-band radiometer (MFRSR) is also an automated, electrically-

powered, ground-based solar instrument which is used to characterize and quantify the 

atmospheric water vapor, ozone, and aerosols. Fig. 3.6 displays the full picture of the MFRSR 

(left) and the cut-view of the instrument (right).   

 

                

Figure 3.6 Full picture of MFRSR (left) and cut-out view of the MFRSR (right) 

 (Source: GB Hodges and JJ Michalsky, 2011) 

 

                                          

Figure 3.7 MFRSR-observed time series of spectral AOD (top), Angstrom exponent 

(middle) and water vapor content (bottom) on 24 April 2013 in Reno. 
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The detail information on its structure and operation can be found at  

http://www.arm.gov/publications/tech_reports/handbooks/mfr_handbook.pdf 

MFRSR measures the downwelling total (direct plus diffuse)-horizontal and diffuse (or 

scattered)-horizontal solar irradiances in units of W/(m
2
 µm) at six narrowband visible and NIR 

wavelengths of 0.415, 0.5, 0.615, 0.673, 0.870, and 0.940 µm simultaneously at a temporal 

resolution of one minute or less with independent interference-filter-silicon photodiode detectors 

and the automated rotating shadow-band technique (Harrison et al. 1994). This set of wavelengths 

is sensitive to gases (Rayleigh) scattering, aerosol extinction, water vapor absorption, and ozone 

absorption as follows: 0.615 µm (ozone and aerosols), 0.940 µm (water vapor), and the rest 

(mainly to aerosols). Both the total and diffuse irradiance components are measured with the 

same detector for each channel. An initial measurement is made for the total horizontal 

irradiance. The shadow-band is then rotated to block out the direct solar beam to measure the 

diffuse component alone. The direct component is then obtained by subtracting the diffuse 

component from the total irradiance. The Langley linear regression analysis is performed on the 

direct-normal component observations to obtain spectral AOD and calibration constants. These 

AODs can be used to derive the column abundances of atmospheric aerosols, water vapor and 

ozone, just as with the Cimel instrument. 

 In order to retrieve the AOD, the 0.415 and 0.870 µm–channel data are used in which the water 

vapor and ozone absorption are relatively insignificant i.e.                        . Then, 

        ( )   ( )        ( ).  

The Angstrom exponent α is measured using 0.5 µm and 0.87µm wavelengths 

  
   [

        (   )

        (    )
]

  [
   

    
]

.  (3.4) 

This parameter α provides basic information on the aerosol size. For example,   is 1 to 3 for fine- 

mode anthropogenic pollutants, and   ~ 0 for coarse mode particles (Reid et al. 1999). Fig. 3.7 

http://www.arm.gov/publications/tech_reports/handbooks/mfr_handbook.pdf
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represents a typical time series plots for the spectral AOD, Angstrom exponent, and water vapor 

content measured by the MFRSR on 24 April 2013 in Reno. The higher AOD values during 

afternoon indicate the arrival of dust plume in Reno. The smaller values of α during the same 

hours indicate the predominance of coarse mode mineral dust particles over Reno. The low values 

of columnar precipitable water signify that Reno was very dry all day. The MFRSR data was used 

to obtain the dust case study size distribution because the Cimel data was not available. The 

MFRSR complements the Cimel (Air 2014). 
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4 RADIATIVE TRANSFER MODELS 

4.1 Line-by-line radiative transfer model and discrete ordinate radiative transfer solver 

Fig. 4.1 represents the schematic flowchart of the radiative transfer models used in this work. 

 

Figure 4.1 Flowchart for model description 

 

 

We have used two radiative transfer models: Line-By-Line Radiative Transfer Model (LBLRTM; 

Clough and Iacono 1995)   and the combination of LBLRTM and Discrete Ordinates Radiative 

Transfer Solver (DISORT; Stamnes et al. 1988), called LBLDIS (Turner 2003; Turner 2005).The 

LBLDIS takes scattering, absorption, and thermal emission of the clouds and aerosols into 

account and provides the radiative transfer.  Both models assume the Earth-atmosphere as being 

composed of vertically inhomogeneous plane-parallel layers with homogeneous layers and the 

location in the atmosphere is specified by the optical depth τ as shown in Fig. 4.2. 
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Figure 4.2 Schematic representation of the atmospheric plane-parallel multilayered 

medium. T and P are temperature and pressure, respectively, and τ is optical depth. 

 

 

The LBLRTM, along with the line parameter database and the continuum model, is available 

from the Atmospheric and Environmental Research (AER) Incorporated’s website 

http://rtweb.aer.com. LBLRTM is a highly accurate, computationally efficient, and flexible line-

by-line radiative transfer model which was derived from the FASCODE (Fast Atmospheric 

Signature Code), and developed at AER Inc., (Clough et al. 2005). The validations of the model 

have been performed for a wide variety of atmospheric conditions. Even though the model 

documentation is available online at http://rtweb.aer.com/lblrtm_frame.html, a brief overview on 

the LBLRTM is presented here. 

The LBLRTM is used to compute spectral gaseous absorption optical depths profiles, and 

upwelling and downwelling transmittances and radiances emitted by the Earth-atmosphere 

system. The model uses the HITRAN  (http://cfa-www.harvard.edu/hitran) molecular 

spectroscopic absorption database (Rothman et al. 2005) for the spectroscopic line parameters 

along with the MT_CKD ( Mlawer-Tobin-Clough-Knsizys-Davies) continuum model which 

includes self and foreign broadened  coefficients for water vapor as well as continua absorption 

by  CO2, N2, and O2, half-width dependence on temperature, pressure shift coefficient, and 

http://rtweb.aer.com/
http://rtweb.aer.com/lblrtm_frame.html
http://cfa-www.harvard.edu/hitran
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extinction due to Rayleigh scattering. Voigt line shape is used at all atmospheric levels, with a 

line cut-off at 25 cm
-1

 from the line center. The model has been extensively validated against 

clear-sky atmospheric radiance spectra from ultra-violet to microwave, since it has been used to 

produce a Rapid Radiative Transfer Model (RRTM) employed in the community climate models 

and other models (Turner 2003). Version 12.2 of the LBLRTM, and version 2.5.2 of MT_CKD 

continuum model and the HITRAN 2008 line parameters (Rothman et al. 2009) are used in this 

work. 

The LBLRTM package contains the line parameter database with the corresponding line coupling 

parameters e.g. aer_V_3.2 and the corresponding LNFL program (v_2.6) that converts the ascii 

line file into an input binary file for LBLRTM. LNFL is a line file creation program that extracts 

the line parameters for use in LBLRTM and stores in a file called TAPE3. Most of the input and 

output file names are given as “TAPEx” where x is a one- or two-digit number. TAPE3 produced 

by LNFL and TAPE5 about the atmospheric profiles are inputs required to run LBLRTM. 

TAPE27 is one of the output files which contains the radiance spectra in the units W/(cm
2
 Sr cm

-

1
) with the highest pressure level (lowest altitude) as the first layer. TAPE6 contains the layer 

information such as altitude, pressure, temperature, and concentrations of various greenhouse 

gases for a given run. The model can be run in various platforms such as UNIX/LINUX, OS X, 

SOLARIS, IRIX and AIX. Fig. 4.3 outlines the general features of the LBLRTM model.  

The model in our calculation used 119 layers of atmosphere as high as 75 km above the surface 

 The HITRAN 2008 database (Version 13.0) contains over 2,713,000 lines for 39 different 

molecules. In order to resolve these individual lines, a nominal spectral sampling rate of less than 

the mean line half width must be utilized. Such highly resolved radiative transfer calculations are 

called line-by-line (LBL) calculations.  
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Figure 4.3 Schematic representation of LBLRTM model.  

(http://rtweb.aer.com/lblrtm_frame.html) 

 

  

       

Figure 4.4 FTIR vs LBLRTM radiance (left) and (FTIR-LBLRTM) residual radiance for 01 

August 2013 at 17:00 LST in Reno. A radiance unit (RU) is 1 mW/(m
2
 Sr cm

-1
). 

 

 

Both the FTIR-observation and LBLRTM calculations in Fig. 4.4 are based on 01 August 2013 

clear sky emission at 17:00 LST aka 00:00 UTC on 02 August 2013 in Reno. The concurrent 

radiosonde profiles of temperature, pressure, and humidity were used as an input to represent the 

atmospheric structure. The radiosonde launch is located at the National Weather Service near 

Desert Research Institute (DRI) in Reno, about a mile away from the observation station. We 

used the US Standard Atmosphere (1976) model for the atmospheric profiles beyond the 

http://rtweb.aer.com/lblrtm_frame.html
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coverage of the sounding (usually above 30 km). The causes of discrepancy between the 

measurement and model as seen in Fig. 4.4 (right) are detailed in Chapter 5.  

In order to compute the radiation from a cloudy scene and aerosol-loaded atmosphere at high 

spectral resolution, the LBLRTM is coupled with the DISORT, collectively called LBLDIS. For 

this purpose, the LBLRTM is used to calculate the monochromatic absorption optical depth of 

atmospheric gases at each vertical layer for the sounding launched on that day and time of FTIR 

observation. The single scattering properties of the cloud or aerosol layer such as asymmetry 

parameter; single scatter albedo; extinction, scattering and absorption efficiencies integrated over 

an appropriate size distribution function, together with the profiles of gaseous optical depth as a 

function of wavenumber are input to DISORT to complete the radiative transfer calculation. 

DISORT is designed to solve the equations of plane-parallel radiative transfer in a vertically 

inhomogeneous multi-layered atmosphere which is able to compute both the scattered and 

thermally emitted radiation at different heights and directions. DISORT solves the following Eq. 

4.1 describing the full transfer of monochromatic radiation at wavenumber   through a plane-

parallel medium (Stamnes et al. 1988) 

 
   (   )

  
   (   )    (   ),  (4.1a) 

where   (   ) is the monochromatic (or spectral) intensity along direction µ (cosine of the polar 

angle,  ),   (azimuthal angle) at optical depth    measured perpendicular to the surface.   (   ) 

is the source function for both emission and scattering which is given by 

  (   )  (   ) (   )  
 

  
 ∫ ∫  (         )   ( 

    )        

  

  

 
,    (4.1b) 

where P is the scattering phase function, ω is the single scatter albedo, and B is the Planck’s 

function. Eq. 4.1 is, in fact, the full radiative transfer equation for a plane-parallel atmosphere. 

This equation is subjected to boundary and continuity conditions that require that the intensity be 

continuous across layer interfaces.  The single scattering properties are taken to be constant 
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within each layer, but they are permitted to vary from layer to layer as shown in Fig. 4.2. The 

DISORT algorithm is versatile, and is appropriate for atmospheric applications ranging from the 

ultra-violet (UV) through to the radar region of the electromagnetic spectrum. The algorithm has 

been tested against a wide variety of published solutions. 

 Eq. 4.1 can be used to solve for both the downwelling   
  and upwelling   

  monochromatic 

intensities (or radiances). The spectral) flux is obtained by integrating         over one 

hemisphere of solid angle (Petty 2006; Eqs. 2.58 and 2.59) i.e. 

  
   ∫ ∫   

                 
 

  ⁄

  

 
,  (4.2a) 

for downward flux and 

  
  ∫ ∫   

                 
  ⁄

 

  

 
, (4.2b) 

for upward-directed flux. The dimensions of the spectral flux are power per unit area per unit 

wavenumber. Since I is positive, both the fluxes are positive. The broadband flux over the desired 

range of wavenumber [     ] is then obtained by integrating the monochromatic flux F  over that 

spectral range i.e. 

 (     )  ∫     
  

  
.  (4.3) 

The typical units of the broadband flux are W/m
2
.  

An ASCII parameter file is the first file that is read by the LBLDIS, which controls its execution. 

The file contains the number of streams (and Legendre polynomials) to be used by DISORT, 

polar angles, zenith angle, wavenumber range and the spectral resolution for the calculation, the 

number of cloud, or aerosol layers, the location of the cloud/aerosol, the cloud/aerosol properties 

such as effective radius and optical depth for a reference wavenumber e.g., 900 cm
-1

 (11.0 µm). 

Also included in the file are the location for the LBLRTM output files that contains the gaseous 

optical depth profiles and the atmospheric state data, SSP database, and information about the 

surface temperature and emissivity. The parameter file also allows to choosing ‘microwindows’ 
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in the given spectral region that are relatively free from greenhouse gaseous absorption lines 

(microwindows between gaseous absorption lines will minimize the effects of the atmospheric 

gases such as water vapor and other trace gases), as well as using Henyey-Greenstein function to 

approximate the scattering phase function. Followed by reading the parameter file, DISORT 

proceeds to compute the downwelling radiance.  Apart from radiance spectrum, the program also 

calculates the spectral fluxes, which are all stored in the Network Common Data Form (netCDF) 

output file. The computed radiance and spectral fluxes are then convolved with FTIR’s 

instrument function to compare the calculation with the observation. The spectral fluxes can be 

used to obtain the broadband flux in W/m
2
 by integrating them over the desired spectral range 

(Eq. 4.3). 

Finally, the radiative forcing of the aerosols at the bottom of the atmosphere (BOA) and at the top 

of the atmosphere (TOA) denoted by       and        , respectively, are calculated by using 

the following equations (Wendisch et al. 2007; Markowicz et al. 2003) 

      [    
 ]

        
 [    

 ]
     

   (4.4) 

       {[    
 ]

       
 [    

 ]
     

}  (4.5) 

The quantity F with superscripts up-arrow and down-arrow represents the upwelling and 

downwelling broadband fluxes, respectively. The index ‘clear’ indicates the aerosol and cloud-

free condition and the index ‘aerosol’ represents the inclusion of aerosol in the atmosphere during 

calculation. Conventionally, positive and negative signs of    imply the aerosol heating and 

cooling effects, respectively. 
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5 A CASE STUDY OF CLEAR SKY OVER RENO   

5.1 Clear sky measurement and simulation 

The clear sky (free from visible clouds and aerosols) radiances are dominated by emission from 

the greenhouse gases in the atmosphere. The relatively dry atmospheric condition of Reno is 

favorable for reducing the strong effect of water vapor in the thermal IR region. We present 

measurements that were carried out in the afternoon at 17:00 LST on 01 August 2013 aka 00:00 

UTC on 02 August 2013 and in the morning at 05:00 LST (12:00 UTC) on 02 August 2013. 

These days were very dry with column precipitable water (PW) of 1.48 and 3.93 mm, 

respectively. The FTIR-observed radiances were simulated using LBLRTM with the atmospheric 

state (temperature, moisture profile etc.) from respective radiosondes as an input. In addition to 

the molecular spectroscopic database, a number of additional parameters (e.g., spectral 

information, additional atmospheric data, path characteristics, and output format) are also 

required in the LBLRTM input file. 

Figs. 5.1a and 5.1b are Reno’s sounding profiles of the temperature and dew point plotted as a 

function of pressure and altitude on Skew-T Log-P graphs from the National Weather Service 

(NWS) as processed by the Atmospheric Science department at the University of Wyoming. Fig. 

5.1a is the sounding for 17:00 LST, 01 August 2013 and Fig. 5.1b is for 05:00 LST, 02 August 

2013. The station identification number and the station name abbreviation for Reno have been 

shown in the upper left-hand corner of the Skew-T Log-P plots. The arrows on the immediate 

right of the plot indicate wind direction profiles. The most important features of the sounding 

plots lie on the temperature profile of the atmospheric boundary layer (BL). In the afternoon (Fig. 

5.1a), there is a strong adiabatic condition (temperature decreasing with height) from the surface 

up to the pressure level of approximately 650 milibars (mb). The temperature curve is 

approximately parallel to the dry adiabats, indicating a well-mixed layer or dry BL. The thickness 

of the BL extends to 3 km above the ground. The dry adiabatic condition of the atmosphere 
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allows the pollutants to be well-mixed over the wide vertical range of the atmosphere reducing 

pollutants’ concentrations significantly near the surface. On the contrary, Fig. 5.1b shows a strong 

morning inversion (temperature increasing with height) at 12.00 UTC reaching a height 

corresponding to a pressure of about 800 mb. The inversion layers are extremely stable because 

the air parcels at the surface are colder and therefore, much denser than those above. The 

surface’s cold air then causes the pollutants to accumulate in the stable environment resulting in 

an increase in pollutants’ concentrations at the surface. 

Our measurement is mainly associated with a part of the thermal IR region (500-2000 cm
-1

; 20-

5µm), which plays a major role in the radiative balance of the Earth. Fig. 4.4 (left) depicts the 

radiance spectra measured with the FTIR (green solid curve) at 17:00 LST on 01 August 2013 

and the LBLRTM-simulated radiance spectra (red broken curve).  Fig. 5.2a illustrates the FTIR-

observed radiance spectra (green solid curve) at 05:00 LST on 02 August 2013 and the simulated 

radiance spectra (red broken curve). The features of the adiabatic and inverted conditions of the 

atmosphere can also be seen in the measured and simulated radiance spectra of Figs. 4.4 (left) and 

5.2a, respectively as well as the brightness temperature spectra of Fig. 5.2b. The adiabatic 

temperature structure of the BL in the afternoon changes into the inverted structure in the early 

morning due to overnight cooling of the Earth’s surface.  

The brightness temperature at about 668 cm
-1

 (or 15 µm) corresponds to the temperature of the 

atmosphere at or near the surface and the brightness temperatures far from the wavenumber 

correspond to the temperatures of the upper levels. The spikes that are seen at 668 cm
-1

 in both 

spectra of Fig. 5.2b indicate the temperature of the hotter dome-shaped observatory in the 

afternoon (which is about 300 K) and in the morning (which is about 290 K).     
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Figure 5.1a Radiosonde data for Reno, NV 01 August 2013, 00:00 UTC. The solid lines on 

the right and left represent the temperature and dew point temperature, respectively.   

 

 

Figure 5.1b Radiosonde data for Reno, NV 02 August 2013, 12:00 UTC. Vertical profiles of 

temperature and dew point temperature are used for the initialization of the model 

simulations. 
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Figure 5.2a A comparison of the measured radiance spectra (green solid curve) for 05:00 

LST on 02 August 2013 to the model radiance spectra (red broken curve). A radiance unit 

(RU) is 1 mW/(m
2
 Sr cm

-1
). 

 

 

Figure 5.2b Measured brightness temperature spectra on 01 August 2013 at 17:00 LST 

(blue solid curve) and 02 August 2013 at 05:00 LST (red dotted curve). 
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Figure 5.2c Expansion views of Fig. 4.4 (left) for the H2O vapor bands. The upper panel 

refers to the region 500-600 cm
-1

 and the lower panel the region 1200-2000 cm
-1

. A radiance 

unit (RU) is 1 mW/(m
2
 Sr cm

-1
). 
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Figure 5.2d Expansion views of Fig. 4.4 (left) for the CO2 (top) and window (bottom) 

regions. A radiance unit (RU) is 1 mW/(m
2
 Sr cm

-1
).  
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Figure 5.2e Absorption cross-section per molecule of greenhouse gases as a function of 

wavenumber (courtesy: W. P. Arnott). 
  

The radiance spectra are populated with spectral lines of greenhouse gases such as 15-m CO2 

band from about 625 to 725 cm
-1

, 6.3-m H2O vapor band from about 1300 to 2000 cm
-1

 and its 

other band from 500-550 cm
-1

, and the 8 to 13-m IR window region from about 800 to 1200 cm
-

1
. The window region contains the 9.6-m O3 band from about 1000 to 1100 cm

-1
. The methane 

band lies on about 1200 to 1400 cm
-1

. The H2O vapor lines are not limited only to the regions 

mentioned above but are spread throughout the IR spectrum. This information is evident from the 

Fig. 5.2e which displays the absorption cross section per molecule of various IR active gases as a 

function of wavenumber. The entire spectra can be studied by splitting them into four main 

spectral regions. 

Both panels of Fig. 5.2c are the expanded views of Fig. 4.4 (left) in the H2O vapor spectral bands. 

The amplitude of H2O vapor lines in the spectral regions 500-600 cm
-1

 and 1200-2000 cm
-1

 

depend on the absolute H2O vapor amounts. The higher the H2O vapor amount in the lower 

atmosphere, the more saturated the lines will be. Those saturated lines have variations as we see 



39 

 

in the 1450-2000 cm
-1

 region. The high-variation lines such as in the 500-600 cm
-1

 region are 

caused by decreased emission strength between the lines, which results from a small amount of 

H2O vapor in the atmosphere. This particular region, therefore, indicates the very dry atmosphere 

of Reno. The radiosonde measured an extreme low amount of precipitable water of 1.48 mm at 

that time.  At   > 1400 cm
-1

, the atmosphere is almost opaque due to a fundamental bending mode 

of the H2O vapor molecule, and the temperature spectrum yields the temperature of the air as 

shown also in Fig. 5.2b. 

The top panel of Fig. 5.2d represents an expansion view for the CO2 band and the bottom panel of 

the same figure is that for the IR window region. In the spectral range 625-715 cm
-1

, the 

transmittance of the atmosphere is very low due to absorption by CO2. CO2 is an abundant and 

well-mixed IR active gas in the atmosphere. Thus the air exhibits properties of a blackbody at the 

temperature of the BL of the atmosphere and the temperature spectrum yields this temperature 

(see Fig. 5.2b). Since CO2 exhibits properties of a blackbody in this region, an approximation of 

the temperature of the surface can be read off the temperature spectrum as the upper boundary in 

this spectral range. The central portion of the 15-m band at 668 cm
-1

 is strongly absorbed, and 

the emission is black at the surface ambient temperature. The distinctive spike at the line 668 cm
-1

 

is present only in the measured spectrum. It is attributed to the strong absorption/emission of CO2 

gas present near the instrument and relatively high temperature of the dome-shaped observatory. 

On each side of the band center, the instrument receives signals from the higher (colder) 

atmosphere, and hence the instrument measures less radiance. This feature accounts for the 

decrease in the absorption/emission efficiency of CO2 away from the band center and emission 

from the colder atmosphere. That is why the CO2 absorption/emission region allows the recovery 

of altitude temperature profile (Adhikari 2012).  

The region 800-1200 cm
-1

 is the IR window of the atmosphere with very little emission. The 

absorption lines in the atmospheric window are caused by H2O vapor, ozone, CFC-11, CFC-12 
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and HNO3. The prominent feature (seen in the lower panel of Fig. 5.2d) between 1000 cm
-1

 and 

1100 cm
-1

 is caused by ozone. The spectra are very sensitive to the tropospheric ozone in the 

center of the ozone band. At   > 1100 cm
-1

 the transmittance of the atmosphere decreases due to 

stronger absorption lines of H2O vapor, CH4, and N2O.  

We now discuss the discrepancies between the FTIR measurements and the corresponding 

LBLRTM simulations. Broadly viewing, both the measurement and model seem to have a good 

agreement qualitatively with each other in the whole range of measurement (Figs. 4.4 (left) and 

5.2a), however, there exists a substantial discrepancy quantitatively between them as evident 

from the residual plot of Fig. 4.4 (right) and the expansion views (Figs. 5.2c and 5.2d).  

A large disparity between the simulated and measured spectra seen in the water vapor absorption 

band (500-600 cm
-1

) is associated with the large temporal and spatial variability of water vapor in 

the atmosphere. The water vapor profile from the radiosonde, which was input to the model, may 

not exactly represent the profile right above the instrument. In the 15-µm CO2 absorption band, 

the absorption almost gets saturated and, therefore, we can hardly detect the differences between 

the model and measurement. The disagreement  in the window region (800-1200 cm
-1

) may be 

associated with various factors: the water vapor continuum may not be well represented in the 

line parameter database, the US standard 1976-ozone profile used in the model may not 

accurately represent the ozone profile of the measurement site, using emissivity of one for 

calibration-blackbodies may overestimate the radiance during calibration, and aerosols present in 

the so-called clear atmosphere may likely contribute to the radiance. FTIR calibration and 

measurement uncertainty is discussed further in Appendix A. Beyond 1200 cm
-1

, there is a 

contribution from CH4, CCL4, F11, F12 etc. The model also ignores contribution from these 

species and shows less agreement with the measurement. Overall, these results show a reasonable 

agreement between the observed and simulated radiance. The discrepancy is likely due to the lack 

of aerosol in the model. The next two chapters include aerosol. 
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6 A CASE STUDY OF THE CALIFORNIA RIM FIRE EVENT IN AUGUST 2013 

6.1 Observations of the Rim fire event in Reno  

The Rim fire event took place at Sierra Nevada region and parts of California on 17 August 2013 

and lasted until 06 September 2013. It was the biggest wildfire in the Sierra Nevada and the third 

largest in California’s history, and burned about 1041 km
2
. The extreme drought conditions, the 

widespread heat wave, and winds favored the rapid spread of the fire. The biomass burning in a 

forest fire emits and releases large amounts of trace gases such as CO2, CH4, N2O, CO, NO2, O3 

etc., and aerosols including both fine and coarse particulate matter (Urbanski et al. 2009).  The 

smoke and haze from the Rim fire and the American fire in the Tahoe National Forest caused 

poor air quality conditions and visibility in Reno (which lies about 240 km North of the fire) as 

shown in Figs. 6.1 and 6.2. The Washoe County Health District Air Quality Management 

Division reported the air quality of Reno to be in the unhealthy range during the fire event due to 

the high concentration of fine particulate matter PM2.5 (particles smaller than 2.5 µm in diameter). 

These are microscopic particles that can travel deep into our lungs and cause people varying 

degrees of health problems. Li et al. 2003, using transmission electron microscopy, observed that 

the smoke aerosols from a biomass burning grass in southern Africa contained mostly (70-83%) 

the potassium salt particles (KCL, K2SO4, and KNO3), and lesser amounts of soot, sea-salts, and 

organic particles. In contrast, pine forest aerosol composition from the Rim Fire is predominantly 

organic carbon (Lewis et al. 2008). 

A 48-hour backward trajectory analysis of air mass flow arriving in Reno on 26 August 2013 

(Fig. 6.3) was performed for three different altitudes (500m, 1 km, and 3 km) using the online 

version 4 of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, 

developed by the Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric 

Administration (NOAA). HYSPLIT applications include tracking and forecasting the release of 

pollutants, air-parcel trajectories, volcanic ash, dust, and smoke from wildfires. It uses gridded 
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meteorological data to drive the trajectories and concentrations either forward or backward in 

time at a regular time interval (Draxler et al. 2013). 

 

Figure 6.1 Satellite image of the Rim fire on 26 August 2013 (Credit: NASA image by Jeff 

Schmaltz, LANCE/EOSDIS Rapid Response). Red outlines indicate hot spots where 

MODIS detected unusually warm surface temperatures associated with fire. 

 

                      

Figure 6.2 Smoke from the Rim fire (about 240 km away) hangs over Reno. The visibility is 

highly reduced. 
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Figure 6.3 NOAA-HYSPLIT 48-hour back trajectories for the air mass ending at 500 m 

(red curve), 1 km (blue curve), and 3 km (green curve) above Reno at 17:00 LST on 26 

August 2013; asterisk indicates the ending point in Reno. 

 

 

In Fig. 6.3, the red, blue and green lines represent the air-parcel trajectories at the levels of 500 m, 

1 km, and 3 km above the surface, respectively. The ending time (27 August 2013 00:00 UTC aka 

26 August 2013 17:00 LST) and location (Reno: 39.53° N, 119.82° W) are marked with asterisks 

in each line. This model is able to clearly demonstrate when and where the air parcels came from. 

It is obvious that the southwesterly air flow transported the smoke plume from the Rim fire 

toward Reno. The smoke particles are assumed to be vertically distributed as high as 3 km above 
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the surface because the boundary layer was well mixed up to that altitude from the surface 

(source: Reno sounding on 26 August 2013 at 17:00 LST aka 27 August 2013 at 00:00 UTC). 

 

6.2 Microphysical and spectral optical properties of the Rim fire smoke aerosols  

 The size distribution of 26 August 2013 at 17:00 LST in Reno (Fig. 2.1[left]) is dominated by the 

fine mode particles with a radius less than 1µm. Even though the size of the fire-emitted smoke 

particles depend largely on the burning conditions such as burnt material, combustion efficiency, 

stage of combustion, and chemical and physical transformations that take place during transport, 

the freshly emitted smoke particles contain mainly fine mode particles (< 1 µm) with 

approximately 80-90 % of their mass and a small fraction of coarse mode particles (2-20 µm) 

(Hodzic et al. 2007).  

Fig. 6.4 shows the time series of the SW spectral AOD (top panel) and Angstrom exponent 

parameter (bottom panel) for 26 August 2013.  The total AOD at 500 nm (or 0.5 µm) was 1.26 at 

17:00 LST.  The large value of observed visible optical depth validates the presence of a 

substantial amount of particles in the atmosphere, which results in the significant extinction of 

solar radiation. The Angstrom exponent α calculated between two wavelengths, 0.44 µm and 0.87 

µm, was 2.4 at that time. The large value of α (≥ 1) is associated with smaller particles mainly 

issued from combustion processes such as urban or biomass burning aerosols. The sudden drop of 

α around 21:30 UTC in Fig. 6.4 (bottom panel) could, most likely, be associated with the 

transient cloud passed by the instrument. Eck et al. 1999 showed that α varies substantially as a 

function of wavelength for accumulated mode dominated aerosols. The sudden increase in the 

AOD as well as α values during late afternoon indicates the arrival of a small-sized smoke plume 

over Reno. The daily mean aerosol AOD usually varies from low (0.05-0.1) to much higher 

values (0.5-0.8) which are the characteristics of clean and polluted atmospheric conditions, 

respectively. The AOD values at shorter wavelengths are significant on that day. The AOD values 
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are low for longer wavelengths. This implies the relative insensitivity of longer wavelengths to 

small-sized particles. 

  

 

Figure 6.4 Time series of aerosol optical depth (top) and Angstrom exponent (bottom) 

observed with Cimel sun-photometer on 26 August 2013 (UTC). 
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The typically measured visible optical thickness at 0.5 µm τ0.5 is translated into the thermal IR 

optical depth τIR on the basis of the following relation for the bimodal size distribution: 

   
            

       
       

        
       ,  (6.1) 

where      ∫       ( )  ( )   
    

    
 is the extinction coefficient. This quantity is calculated 

using the Mie theory at both IR and 0.5 µm wavelengths. For unimodal size distribution, either 

coarse mode or fine mode, the Eq. (6.1) is modified as 

   
             

       
        

        
       .  (6.2) 

The IR optical depths at 1100 cm
-1

 were found to be 0.036, 0.030, and 0.006, respectively, for the 

bimodal and unimodal fine mode and coarse mode size distributions with          . 

The optical properties describe the interaction between the aerosols and radiation, which are 

usually measured in terms of extinction, scattering and absorption efficiencies; single scatter 

albedo; and asymmetry parameter. These quantities for the smoke aerosols were derived from 

microphysical quantities such as complex refractive index and size distribution by means of the 

Mie theory, since the smoke haze particles are largely spherical (Martins et al. 1998). The data for 

the spectral complex refractive index were taken from the HITRAN aerosol database for both fine 

mode smoke particles and coarse mode dust particles (i.e., kaolinite).  

 

Figure 6.5 Complex spectral refractive index for burning vegetation (source: HITRAN 

aerosol database; southerlnd_khanna_biomass.dat) 
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Figure 6.6 Complex spectral refractive index for kaolinite (source: HITRAN aerosol 

database; querry_minerals.dat) 

 

 

 Figs. 6.5 and 6.6 show the complex spectral refractive index,  ( )    ( )      ( ), where    

is the real and    is the  imaginary parts, of burning vegetation and kaolinite dust (Al2Si2O5 

[OH]4), respectively. The original refractive indices in each case were interpolated to get values 

for our measured wavelengths. The real part of the refractive index determines the (phase) speed 

of the electromagnetic wave, while the imaginary part, also called the absorption index, is related 

to the absorption coefficient    through    
    

 
 (Liou 1992). The absorption by the particles is, 

therefore, proportional to the imaginary index of refraction. As seen in Fig. 6.5, the strongest 

smoke absorption takes place in the range 1000-1800 cm
-1

 and the strongest dust absorption takes 

place in the regions 500-600 cm
-1

 and 900-1100 cm
-1

 (Fig. 6.6). Real part of the refractive index 

is mostly responsible for the scattering process. 

 In this analysis, the fine mode was assumed to consist of solely biomass burning smoke particles 

and the coarse mode to consist of only kaolinite, and hence the refractive indices were applied 

accordingly while computing single scattering properties. Furthermore, the single scattering 

properties were computed using a lognormal size distribution function for all three cases: bimodal 

distribution consisting of both fine and coarse modes, and unimodal including the fine mode and 
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coarse mode separately. Unimodal distributions were used to identify the radiative forcing by fine 

and coarse mode aerosols.  

  

    

Figure 6.7 Asymmetry parameter (a) and single scatter albedo (b) for fine mode. 

Parameters for the coarse mode and bimodal size distributions are shown in (c) and (d), 

respectively, for 26 August 2013 at 17:00 LST. 

 

 

Figs. 6.7 and 6.8 demonstrate the various single scattering properties of the atmospheric particles 

present in Reno on 26 August 2013 at 17:00 LST. The asymmetry parameter for the fine mode 

(Fig. 6.7a) is very small, consistent with the Rayleigh regime, and it decreases monotonically 

with increasing wavelength. The values of the asymmetry parameter for the coarse and bimodes 

are much larger than those for the fine mode. The single scatter albedo (ω) of the fine particles 

(Fig. 6.7b) is quite low in the region where the imaginary refractive index is strong (1000-1800 

(a) (b) 

(c) 

(d) 
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cm
-1

), and is a function of wavelength in the region where the absorption is low. The value of ω 

depends substantially on the imaginary part of the refractive index, while the asymmetry 

parameter is only weakly sensitive to imaginary part. Since the size parameter of the smoke 

particles (fine mode) is very small compared to the wavelength, the scattering efficiency is 

insignificant and the extinction efficiency is close to the absorption efficiency (Fig. 6.8a). All the 

extinction is due to absorption (ω ≈ 0). Similar features exist in the cross-section parameters as 

well (not shown). The contribution of the scattering to the extinction increases for the bimodal 

case (Fig. 6.8c), and is much more significant for the coarse mode (Fig. 6.8b).  

 

     
 

 
 

Figure 6.8 Extinction (black solid curve), scattering (red dotted curve), and absorption (blue 

dashed curve) efficiencies for fine mode (a), coarse mode (b), and bimodal (c) size 

distributions for 26 August 2013 at 17:00 LST. 

 

(a) (b) 

(c) 
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The fine mode efficiency plot (Fig. 6.8a) also shows that the scattering effect is negligibly small 

as compared to the absorption. That is why the zero-scattering approximation can be valid in this 

case. However, the assumption might produce a large uncertainty while including the coarse 

mode. The large efficiency values in Fig. 6.8b show that the coarse mode is capable of strongly 

interacting with LW radiation. 

 

6.3 Thermal radiative properties of the smoke aerosols 

This section presents the LBLDIS outputs such as spectral upwelling and downwelling fluxes 

computed with and without smoke aerosols, and IR radiative forcing (both spectral and 

broadband) due to the biomass burning particles at the BOA and TOA, in the thermal IR range of 

5-20 µm, for fine mode, coarse mode, and bimodal cases, using 119 vertical layers between the 

ground and 75 km. The smoke layer was assumed to be uniformly distributed up to a height of 3 

km above the ground. The gaseous absorption optical depth profile was calculated using the 

sounding on 26 August 2013 at 17:00 LST (27 August 2013 at 00:00 UTC) in Reno. 

According to Fig. 6.9, the coarse mode contribution to the thermal IR fluxes is smaller than the 

fine and bimodal contribution, and all are non-negligible, especially in the window region (8-12 

µm). The bimodal condition accounts for both the fine mode with refractive index of biomass 

burning vegetation and the coarse mode with the refractive index of mineral dust kaolinite. The 

increase in the downwelling flux at the BOA (Fig. 6.9a) is caused by the additional downward 

flux from the aerosol layers. The upwelling flux at the TOA (Fig. 6.9 b) is generally decreased by 

the aerosols, except when the aerosol is at higher temperature than the surface, such as 

temperature inversion condition (Markowicz et al. 2003). The aerosol in the nearest 3 km above 

the ground emits more radiation back to the ground than would be present in clear sky conditions.   
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Figure 6.9 Downwelling flux at the BOA (a) and upwelling flux at the TOA (b) for clear sky 

(black solid curve), fine mode (red dotted curve), coarse mode (blue dashed dot curve), and 

bimodal (cyan dashed dot-dot curve) conditions. 



52 

 

 

 

 

Figure 6.10 Spectral radiative forcing at the BOA (a) and TOA (b) due to fine mode (black 

solid curve), coarse mode (red dotted curve), and bimodal (blue dashed dot curve) particle 

size distributions. 
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Table 6.1 Broadband radiative forcings due to fine mode, coarse mode, and bimodal size 

distributions in different regions of the thermal IR spectrum 

 

Mode Spectral range [cm
-1

] ΔFBOA [W/m
2
] ΔFTOA [W/m

2
] 

 

Unimodal (fine mode) 

525-2000 

800-1250  

525-625  

+ 1.57 

+ 1.49 

+ 2.10e-04 

+ 0.40 

+ 0.37 

+ 8.73e-05 

 

Unimodal (coarse mode) 

525-2000 

800-1250  

525-625 

+ 0.73 

+ 0.67 

+ 2.42e-02  

+ 0.27 

+ 0.24 

+ 1.59e-02 

 

Bimodal 

525-2000 

800-1250 

525-625 

+ 2.28 

+ 2.15 

+ 2.45e-02 

+ 0.67 

+ 0.61 

+ 1.60e-02 

 

Fig. 6.10 and Table 6.1 show the spectral and broadband radiative forcings, respectively, due to 

the smoke-dominated aerosols, both at the BOA and TOA. These values were calculated using 

Eqs. 4.4 and 4.5 mentioned in Chapter 4.  It is clear that the absorption and emission of the 

thermal IR radiation by the wildfire emission particles cause a positive radiative forcing 

(warming) both at the BOA and TOA. These values of the LW forcings are small but not 

ignorable, because these values are comparable to the direct radiative forcing of + 1.66 [± 0.17] 

W/m
2
 due to increase in CO2 concentration, from 280 to 379 parts per million by volume (ppmv) 

since the preindustrial era of 1750 until 2005 (IPCC 2007; Forster et al. 2007). The magnitude of 

direct aerosol radiative forcing depends strongly on the aerosol optical characteristics, size 

distribution, and concentration. Sicard et al. 2014 found that for fine mode particles, all extinction 

is due to absorption and scattering effect has no impact on the IR radiative forcing, consistent 

with the findings here. 
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 The observation of wildfire smoke properties is complicated by the occurrence of different types 

of aerosol compounds in it. 

Our results are not consistent with the assumption made by Turner 2008, which states that the 

thermal IR observations are essentially insensitive to biomass burning aerosols as they tend to be 

fine mode particles, as indicated in Fig. 6.11. The particles lie in the Rayleigh scattering regime 

and the scattering as well as emission contribution to the downwelling radiance in the longwave 

is negligible. This makes the IR retrievals of smoke aerosols very difficult.  

 

Figure 6.11 Arbitrary bimodal aerosol size distribution with the size parameter for various 

wavelengths (0.5, 1.0, 3.5, and 8.0 µm) indicated with the horizontal bars (Turner 2008, 

Figure 5) 

 

 

Fig. 6.11 was taken from Turner 2008 which illustrates the spectral sensitivity to the size of 

particles. It is seen that the SW radiation such as 0.50 and 1.00 µm are sensitive to both fine mode 

(< 1 µm) and coarse mode (> 1µm). In contrast, the LW radiation such as 3.50 and 8.00 µm are 

not sensitive to the fine mode at all. Our results are based on a heavy aerosol load (concentration 

of 0.151 µm
3
 µm

-2
) of fine mode smoke particles which has a substantial contribution to the LW 

fluxes and forcings. We conclude that the LW effects of the fine mode smoke aerosol, at high 

concentration, are not ignorable. 
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6.4 Radiance measurement and simulation results 

Fig. 6.12a displays the downwelling radiance spectra measured with FTIR (black solid curve) at 

17:00 LST on 26 August 2013 and concurrent clear sky (red dotted curve) and smoke aerosol 

(bimodal) simulations (blue dashed dot curve). Fig. 6.12b is an expansion view of (a) in the 

window region.  

There is seen a considerable discrepancy between the FTIR-observed radiance spectra and clear 

sky simulated spectra, especially in the window region. The simulation with bimodal smoke 

aerosols helps to slightly reduce the discrepancy. The disagreement between the measured and 

aerosol-simulated spectra may be associated with uncertainties present in both the FTIR 

measurement and the model computation. The principal observable sources of uncertainties in 

FTIR spectrometer are the blackbody emissivity and temperature. The uncertainty associated with 

those quantities is discussed further in Appendix A. The radiative transfer model is likely to 

possess a variety of uncertainties. H2O continuum may not be well-represented in the H2O 

absorption line parameters.  More importantly, there always exists a big uncertainty while 

modeling the aerosol characteristics such as aerosol type, its composition, shape, size, and 

complex spectral refractive index. We lack complete knowledge of the aerosol chemical 

composition and refractive indices, and cannot rule out the possible presence of trace gases 

during the fire that could contribute to the downwelling IR. Realistic aerosols usually have a 

complex structure and non-spherical shape despite our assumption that particles are simple, 

homogeneous, and spherical. The use of the Mie theory will, therefore, produce uncertainty in the 

particles’ single scattering properties, while treating aerosols as homogeneous spheres.  
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Figure 6.12 (a) Downwelling radiance for 26 August 2013 at 17:00 LST: FTIR measurement 

(black solid curve), clear sky simulation (red dotted curve), and smoke simulation (blue 

dotted curve); and (b) expansion view of (a) in the window region. 
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7 A CASE STUDY OF A DUST STORM EVENT IN RENO ON 24 APRIL 2013 

 

7.1 Observations of dust storm in Reno  

The MFRSR-derived size distribution of the dust-dominated particles in Reno on 24 April 2013 at 

14:29 LST is shown in Fig. 2.1(right) and the parameters for the size distribution in Table 2.1. 

The dominating coarse mode distribution is a typical feature of the airborne dust particles. The 

occurrence of the dust plume is also evident from the Cimel sun-photometer observations of the 

aerosol optical depth (AOD) (Fig. 7.1, top) and the Angstrom exponent (Fig. 7.1, bottom). During 

this period, the AOD rises sharply, and the Angstrom exponent drops off to a minimum. The 

small value of the Angstrom exponent is consistent with the larger-sized particles such as dust. 

The total AOD at 500 nm (or 0.5 µm) at that time was observed to be about 0.19 with both Cimel 

and MFRSR, which was twice the AOD observed during non-dust morning hours on the same 

day. The Angstrom exponent α calculated between two wavelengths, 500 and 870 nm, was 0.23. 

This also indicates the dominance of large size mineral dust particles, in the atmosphere. 

The ARL HYSPLIT backward trajectory analysis (Fig. 7.2, top) was performed at three levels: 

500 m, 1 km, and 3 km, for a 46-hour period to analyze the dust storm event in Reno. The air 

flow was seen to arrive in Reno from the north-east around 14:29 LST on 24 April 2013. We 

believe that the air flow brought the dust plume to Reno all the way from the Humboldt sink, 

located in the north-east of Reno at a distance of about 138 km (Fig. 7.2, bottom). 
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Figure 7.1 Cimel-observed time series spectral AOD (top) and Angstrom exponent (bottom) 

on 24 April 2013 (UTC). 
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Figure 7.2 (top) NOAA-HYSPLIT 46-hour back trajectories for the air mass ending at 500 

m (red curve), 1 km (blue curve), and 3 km (green curve) above Reno at 15:00 LST on 24 

April 2013; asterisk indicates the ending point in Reno, (bottom) map showing the locations 

of Reno (Cimel station) and Humboldt Sink (assumed dust source). 
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7.2 Microphysical and spectral optical properties of airborne mineral dust aerosols 

As shown in Fig. 2.1(right), coarse mode is representative of the dust particles present in the 

atmosphere over Reno on 24 April 2013 at 14:29 LST. Though the dust particles are composite in 

structure, we only used kaolinite in our modeling because it is usually known to be the most 

abundant and a major constituent of the airborne mineral aerosols in terms of its mass fraction 

(Turner 2008). Although using only kaolinite to model optical properties of the dust can lead to 

underestimating or overestimating the extinction coefficients (and optical depth) for a given 

loading, there is no general technique for modeling the optical characteristics of composite 

particles and there is not enough data on regional and global scales to quantify the mineralogical 

composition of dust (Sokolik et al. 1999). The coarse mode dust particles were, therefore, 

assumed to consist only of the kaolinite mineral whose spectral complex refractive index (Fig. 

6.6) was used to compute the optical properties. The fine mode of the size distribution was 

considered to consist of small combustion particles such as biomass burning aerosols and the 

corresponding refractive index (Fig. 6.5) was used to compute the scattering properties. The 

refractive index is an intrinsic factor that controls the single scattering properties of a particle. 

The mineral dust is strongly absorptive in the spectral region at which the imaginary refractive 

index is high. The imaginary refractive index (solid red curve), which  is associated with the 

absorption of the dust particles, peaks at wavenumbers, 550, 900, and 1050 cm
-1

. Absorption at 

1050 cm
-1

 may be ambiguous due to the ozone absorption near the same wavenumber.  

 Assuming the dust particles as homogeneous spheres, the spectral optical properties were 

computed using the Mie theory. The non-sphericity effect of dust particles on the radiative flux is 

small enough for a good first approximation at the IR wavelengths (Yang et al. 2007; Dufresne et 

al. 2002). These individual particle properties are then integrated using the unimodal (fine and 

coarse mode separately) and bimodal lognormal size distribution over the particle size range 0.05-

50 µm to compute the mean (or bulk) optical properties. The effective radii were found to be 
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0.179, 2.269, and 0.812 µm respectively for the fine mode, coarse mode, and bimodal size 

distributions. 

Figs. 7.3 and 7.4 display the optical properties of the modeled particles during the dust event. The 

optical parameters show strong variations with wavelength. The single scatter albedo (SSA) and 

asymmetry parameter of the fine mode (Fig. 7.3 [a] and [b], respectively) exhibit the similar 

features as discussed in the section 6.2. Both the parameters for the coarse mode (Fig. 7.3 [c]) and 

bimodes (Fig. 7.3 [d]) are very sensitive to the lower wavenumbers (i.e., higher wavelengths) and 

their variation on shorter wavelengths decreases in each case. The asymmetry parameter (red 

solid curve) increases at shorter wavelengths as expected, despite some specific ties to absorption 

bands. The SSA (blue broken curve) also shows fluctuations due to specific absorption features in 

the mineral. The SSA of the mineral is not very low since it has a large value of both the 

imaginary and real parts of the refractive index. The value of SSA depends significantly on the 

imaginary part of the refractive index, while the asymmetry parameter depends weakly on the 

imaginary part (Sokolik 1993). Aerosols have the asymmetry parameter of about 0.5 in the region 

8 to 12 µm and tend to scatter in all direction, with a little more in the forward direction. The 

bimodal optical characteristics closely resemble the coarse mode optical features because the 

coarse mode predominates the given size distribution. 

Fig. 7.4 shows various specific features in the efficiency spectra of the particles. For the fine 

mode (Fig. 7.4 [a]), the scattering efficiency (red dotted curve) is very close to zero and all the 

extinction is due to absorption. For the coarse mode (Fig. 7.4 [b]) and bimodes (Fig.7.4 [c]), the 

extinction efficiency increases as the SSA and the asymmetry parameter increase. At some 

wavelengths such as near 8 and 14 µm, the SSA is close to zero and most of the extinction is due 

to absorption. These are ‘Christiansen Bands’ (Arnott et al. 1994) where the real part of the 

refractive index (see Fig. 6.6) is unity. At longer wavelengths, the absorption exceeds the 

scattering, while the opposite effect happens at shorter wavelengths. 
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Figure 7.3 Single scatter albedo and asymmetry parameter for fine mode (a) and (b), 

respectively. The parameters for coarse mode (c), and bimodal (d) size distributions: single 

scatter albedo (blue broken curve) and asymmetry parameter (red solid curve). 

 

 

 

The absorption efficiency (blue dashed curve) mimics the features in the mineral’s imaginary 

refractive index spectrum (Fig. 6.6), i.e. the peaks of absorption efficiency lie at the similar 

wavenumber where the peaks of the imaginary refractive index are located. Both the efficiencies 

and cross-sections (not shown) are found to be higher for the coarse mode than for the fine and 

the bimodal size distributions. The aerosol absorption and scattering of the thermal IR enhances 

the greenhouse effect of dust. 

 

(b) 

(a) 

(c) 
(d) 
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Figure 7.4 Extinction (black solid curve), scattering (red dotted curve), and absorption (blue 

dashed curve) efficiencies for the fine mode (a), coarse mode (b), and bimodal (c) size 

distributions. 

 

 

 

7.3 Thermal radiative properties of the mineral dust aerosols 

 

Like in the case study of the fire event, the radiative properties such as spectral fluxes, and the 

spectral as well as broadband radiative forcings both at the TOA and BOA due to the dust-

dominated aerosols, for unimodal (fine and coarse mode) and bimodal size distributions, were 

computed using LBLDIS. Figs. 7.5 and 7.6, and Table 7.1 represent the LBLDIS outputs. In each 

case, the atmospheric characteristics (pressure, temperature, water vapor profiles, etc.) were taken 

(a) 
(b) 

(c) 
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from the sounding profile of 24 April 2013 at 17:00 LST. The dust was assumed as a 

homogeneous layer being vertically distributed up to an altitude of 3 km above the ground. A dust 

layer at an altitude of 0-3 km may be the most representative case (Tegen et al. 1996).  

The upwelling flux  at the TOA  (Fig. 7.5[b]) would essentially be the flux emitted by the Earth’s 

surface if the gas is perfectly transparent in the thermal IR domain such as the atmospheric IR 

window region (8-12 µm) and the downwelling flux at the BOA (Fig. 7.5[b]) would be zero in 

that region. Since the Earth’s surface is the principal source of thermal IR and it is usually at 

higher temperature than the atmosphere in the afternoon, the upwelling flux is larger than the 

downwelling flux in the IR window region. The presence of highly absorbing mineral dust in the 

atmosphere nearby the surface leads to the decrease in upward flux, but enhances the downward 

flux substantially, especially in the window region. This is obvious with the unimodal coarse 

mode (blue dashed dot curve) and bimodal (cyan dashed dot-dot curve) simulations in each 

spectrum of Fig. 7.5. Since the dust layer is located near the surface, the increase in the 

downward flux due to the aerosols is larger than the decrease in the upward flux. Also, the impact 

of the fine mode particles (red dotted curve) on both the downward and upward fluxes is 

negligible as compared to the coarse mode and bimodal particles. 

It appears clearly from Fig. 7.6 and Table 7.1 that most of the forcing by the dust aerosols takes 

place in the window region. More than 76 % of the total radiative forcing at the BOA and TOA 

lies in that region. The radiative forcing at the BOA is much larger than that at the TOA. This is 

because the absorbing and scattering aerosol layer lies closer to the Earth’s surface, the main 

source of the IR radiation, and IR is reflected, absorbed, and emitted back to the surface by the 

aerosol layer. The aerosol layer reduces the upwelling IR radiation emitted by the Earth surface 

via absorption and scattering, thereby decreasing the flux reaching at the TOA. Since the aerosol 

is at a lower temperature than the surface, the flux increase due to aerosol emission as well as 

forward scattering cannot compensate this flux loss. The aerosol layer residing at higher altitude 
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has lower temperature; thus its emission of LW radiation is smaller. The BOA radiative forcing 

decreases with the height of the aerosol layer, whereas the TOA forcing increases with the height 

of the aerosol layer (Liao and Seinfeld 1998).  

  

 

Figure 7.5 Spectral downwelling flux at the BOA (a) and upwelling flux at the TOA (b) for 

the clear sky (black solid curve), fine mode (red dotted curve), coarse mode (blue dashed 

dot curve), and bimodal (cyan dashed dot-dot curve) size distributions. 
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Figure 7.6 Spectral radiative forcing at the BOA (a) and TOA (b) due to aerosols of fine 

mode (black solid curve), coarse mode (red dotted curve), and bimodal (blue dashed dot 

curve) size distributions. 
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Table 7.1 Broadband radiative forcings due to aerosols at different spectral regions for the 

dust case study 

 

Particle mode Spectral range [cm
-1

] ΔFBOA [W/m
2
] ΔFTOA [W/m

2
] 

 

Unimodal (fine mode) 

525-2000 

800-1250  

525-625  

+ 0.25 

+ 0.22 

+ 8.10e-05 

+ 0.06 

+ 0.05 

+ 2.24e-05 

 

Unimodal (coarse mode) 

525-2000 

800-1250  

525-625 

+ 5.02 

+ 3.78 

+ 0.86 

+ 1.71 

+ 1.32 

+ 0.27 

 

Bimodal 

525-2000 

800-1250 

525-625 

+ 5.20 

+ 3.93 

+ 0.86 

+ 1.76 

+ 1.35 

+ 0.27 

 

The coarse mode alone contributes more than 95 % of the total bimodal radiative forcing at the 

BOA and TOA. Since the absorption and scattering efficiencies increase with increasing particle 

size, the IR radiative forcing both at the BOA and TOA increases with particle size (Sicard et al. 

2013). The significant positive values of the radiative forcing cause the heating effect in the LW 

spectral region. 

Aerosol emission has little to no impact on the spectral fluxes at, or near the major gas absorption 

bands such as CO2 [15 µm], H2O [6.3 µm] and O3 [9.6 µm] due to the dominant emission from 

these gases.  The aerosol radiative forcing is large in the atmospheric window region, but almost 

zero in the major gas absorption bands. The thermal IR radiation near the surface is mostly 

dominated by the emission from water vapor and CO2. There is also a significant impact of the 

large particles on the radiative forcing in the 15 to 20 µm range. Since the emission is dominated 
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by coarse mode particles, there appears no significant difference between the radiative forcing 

due to the unimodal coarse mode and bimodal size distribution. 

Sicard et al. 2014 observed the LW radiative forcing of + 6.02 W/m
2
 at the BOA and + 3.58 

W/m
2
 at the TOA for their mineral dust model. Also, they found that the LW BOA radiative 

forcing varied between +2.8 and +10.2 W/m
2
 with a mean value of + 6.0 W/m

2
, while  the LW 

TOA radiative forcing varied between + 0.6 and + 5.8 W/m
2
 with a mean value of + 2.6 W/m

2
, 

for 11 dust outbreaks observed in Barcelona over the period 2007-2012. These values depend on 

a variety of factors such as mineral dust model (refractive index, size distribution, vertical 

distribution, fine and coarse mode radii and their concentration, etc.), surface temperature, surface 

albedo, AOD at 500 nm, spectral range (ours is 5-20 µm, theirs is 4-50 µm), aerosol height or 

aerosol temperature, the radiative transfer model used (line-by-line, or narrow/broadband model), 

and finally the humidity of the atmosphere. Despite several degrees of freedom just mentioned, 

our model results are comparable to the results of Sicard et al. 2014. 

 

7.4 Sensitivity of dust IR radiative forcing to atmospheric humidity 

Eq. 2.29 explains the influence of water vapor content in the atmosphere on the radiative forcing 

due to coarse mode aerosols such as airborne mineral dust particles. The water vapor absorption 

optical depth     
   

 increases with humidity, which results in the decrease in the both BOA and 

TOA radiative forcing. An analysis has been conducted to examine the theoretical prediction and 

to quantify the effect. 

We chose a typical aerosol size distribution (Fig. 7.7) observed with the AERONET sun-

photometer on 24 April 2013 at 08:00 LST. This is early morning before the dust event described 

in the previous section. The aerosol characteristics of this distribution (Table 7.2) were then used 

to compute the BOA and TOA radiative forcings using two different atmospheric sounding 

profiles, a very dry sounding of 24 April 2013 at 17:00 LST having precipitable water (PW) of 
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1.32 mm (Fig. 7.8) and the same sounding with the relative humidity (RH) profile increased by 

10% for each layer of the sounding so that the sounding becomes less dry or ‘wetter’ (not shown).  

 

Figure 7.7 AERONET-observed size distribution on 24 April 2013 at 08:00 LST. This size 

distribution is assumed to be a representative of typical aerosol size distributions in Reno. 

 

 
 

Figure 7.8 Reno’s sounding profile on 24 April 2013 at 17:00 LST (PW=1.32 mm). 

 

 

         Table 7.2 Size distribution parameters for Fig. 7.7 

Particle mode Concentration (µm
3
 µm

-2
) Median radius (µm) Standard deviation 

Coarse 0.021 1.922 0.811 

Fine 0.009 0.147 0.517 
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The aerosol was again modeled exactly the same way as discussed in sections 7.2 and 7.3, with 

AOD of 0.08 at 500 nm, to derive the optical and radiative properties. The 500 nm refractive 

index was taken from the Cimel retrieval and was nr = 1.48 and ni = 0.0082. Table 7.3 summarizes 

the broadband (5-20 µm) radiative forcings due to the coarse mode particles for the dry and 

wetter atmospheres. 

 

Table 7.3 Radiative forcings due to aerosols in the dry and humid atmospheres 

Type of atmosphere ΔFBOA [W/m
2
] ΔFTOA[W/m

2
] 

Dry 1.30 0.40 

Wetter 1.28 0.39 

 

The BOA forcing decreases by 1.54 % and the TOA forcing by 2.5 % for the wetter atmosphere 

with respect to the dry atmosphere. These values reduced by 4.6 % and 5.0 %, respectively, when 

the RH of the dry sounding was increased by 50% in each layer. Hence the radiative forcings due 

to aerosols are somewhat larger in the dry atmosphere than in the moist atmosphere i.e., ‘the drier 

the atmosphere, the stronger the LW radiative forcing of dust aerosol’ (Liao and SeinFeld 1998). 

Also, the effect of dryness of the atmosphere is seen more on the TOA forcing than on the BOA 

forcing. 

An increase in RH will significantly enhance the water vapor emission in the thermal IR and 

increase in aerosol optical depth by particle growth. A higher humid atmosphere makes the 

modeling of the aerosols more complex and difficult since the water vapor can significantly 

modulate the aerosol properties such as size distribution, refractive index, extinction efficiency, 

etc. (Lubin et al. 2002). Because the aerosol microphysical as well as radiative properties depend 

substantially on the humidity, dry-desert atmospheric condition of the Great Basin in the USA 

can be more appropriate, as a natural laboratory, to study the climatic effect of dry-aerosols. One 
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very important observation is that 24 April 2013 is just a typical day in Reno. Yet the TOA 

radiative forcing by coarse mode aerosol is 0.4 W/m
2
. The LW radiative impact is important even 

on typical days. 

  

7.5 Aerosol IR backscattering effect on the longwave radiative forcing 

Fig. 7.9 illustrates the effect of scattering and absorbing aerosols versus scattering only aerosols 

on the Earth’s radiation field. 

        

Figure 7.9 Aerosol IR scattering effects: model atmospheres with scattering and absorbing 

aerosols (a) and scattering only aerosols (b). 

 

 In the presence of scattering and absorbing aerosols in the atmosphere (Fig. 7.9a), the LW 

radiation emitted by the surface is reflected back and absorbed and reemitted through a combined 

process of scattering and emission. The result will be an increase in both the upwelling and 

downwelling LW fluxes. This causes BOA forcing to increase, but the TOA forcing to decrease. 

On the other hand, if scattering only aerosols are present in the atmosphere (Fig. 7.9b), the 

emission contribution to the fluxes becomes zero. In this case, both the upwelling and 

downwelling fluxes decrease. Consequently, BOA forcing decreases, but the TOA forcing 

increases. The backscattering of the upwelling LW flux emitted by the Earth’s surface is the 
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main effect of the aerosol scattering, and this effect is most prominent in the IR window region 

(Dufresne et al. 2002)  

 In order to quantify the aerosol IR backscattering effect on the IR radiative forcing, the 

imaginary refractive index of the coarse mode aerosol (mineral kaolinite) of Fig. 2.1[right] was 

set to a very small value of 1.0e-08 at all IR wavelengths (5-20 µm) so that the mineral dust could 

represent scattering only aerosols. The dust case study of section 7.3 was reworked with non 

absorbing aerosol. The single scattering properties of the aerosols were reevaluated with the 

adjusted imaginary refractive index, which were used to compute the BOA and TOA radiative 

forcing. The dry sounding of 24 April 2013 at 17:00 LST was used for the gaseous optical depth 

profile. The LBLDIS outputs of the broadband IR radiative forcing for the scattering aerosols are 

displayed in Table 7.4. 

Table 7.4 Aerosol IR backscattering effect on the thermal IR radiative forcing 

Spectral band (cm
-1

) ΔFBOA [W/m
2
] ΔFTOA [W/m

2
] 

525-2000 

800-1250 

525-625 

3.15 

2.54 

0.12 

2.63 

2.13 

0.10 

 

A comparison of the radiative forcing values for the coarse mode in Table 7.1 and Table 7.4 

indicates that the aerosol backscattering effect contributes as much as 67% of the total forcing at 

the BOA, and 58 % of the total forcing at the TOA. The IR scattering effect of the coarse mode 

aerosols, therefore, plays an important role on the radiative forcing even though the aerosols have 

a very small, or no absorption at all. This result is consistent with our theoretical analysis in 

section 2.4. Comparing the bottom right cell of Table 7.1 with the right column in Table 7.4, it is 

to be noted that scattering only-coarse mode aerosol have a larger TOA radiative forcing than 

absorbing aerosol because of the argument of Fig. 7.9. 
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8 DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

8.1 Discussion 

A few case studies were performed using measurements and radiative transfer models to study the 

thermal infrared (IR) properties of the atmospheric greenhouse gases and aerosols such as 

biomass burning smoke particles and wind-blown mineral dust particles, and estimate the direct 

longwave (LW) aerosol radiative forcing in the spectral region (5-20 µm) in cloud-free 

atmospheric conditions. The aerosol properties are based on the size distribution of the particles 

observed with the AERONET Cimel sun-photometer at UNR. These properties are highly 

dependent on the multitude of factors such as morphology, size, chemical and mineralogical 

composition of the aerosols. 

 Simulations of the aerosol IR optical and radiative properties possess a large uncertainty owing 

to several reasons: poor knowledge of the composition of aerosols and their spectral refractive 

indices, uncertainties in the vertical distribution of aerosols in the atmosphere, uncertainties in the 

aerosols properties due to their very complex structure and highly variable characteristics over 

time and space in terms of their life span in the atmosphere and modification to their physical  

(shape, size) and chemical (composition) properties during transport, lack of local and regional 

data of the aerosol properties in the LW spectral region, and errors in the visible optical depth 

estimates. The poor representation of a modeled aerosol may eventually lead to a significant 

inaccuracy in the final computational outcomes. For example, assumption of spherical geometry 

for dust aerosols in computing their optical properties would result in an error in dust radiative 

forcing (Yang et al. 2007). Since spherical geometry has the maximum amount of tunneling 

(interaction of a particle with radiation outside its area cross-section), any deviation from 

spherical shape reduces tunneling efficiency, which leads to an underestimation of the extinction 

of any particle (Mitchell et al. 2001). According to Tegen et al. 1996, the net (solar plus thermal 

IR) radiative forcing due to dust can be either positive or negative depending on the size 
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distribution of the dust particles, their optical depth, mineralogical composition, and vertical 

distribution. Despite many uncertainties, many LW radiative features of the aerosols have been 

resolved in this work. 

     

8.2 Conclusions 

Study of the aerosol IR optical properties are important to radiative transfer simulations, climate 

modeling, and remote sensing implementation. We found that the LW radiative forcing by the 

fine mode smoke aerosols is small and positive; however, it is as large as the IR radiative forcing 

due to the increase in CO2 concentration since 1750. The LW radiative forcing due to large, 

highly absorbing and scattering mineral dust aerosols was found to be significant and positive. 

The positive radiative forcing of the aerosols in the LW region contributes to partially counteract 

the strong aerosol cooling effect in the SW region. Since the atmospheric mineral dust can have a 

large impact on the LW radiative fluxes and because it is wide spread in the Earth’s atmosphere, 

it is essential to include dust aerosol direct IR radiative forcing in regional and global climate 

modeling simulations (Lubin 2002; Turner 2008). The exclusion of IR scattering of mineral 

aerosols may lead to an underestimate of the IR radiative forcing both at the BOA (by 15%) and 

TOA (by 50%) (Dufresne et al. 2002).  These facts underscore that the inclusion of accurate IR 

radiative forcing by the aerosols is vital to the climate models. Our findings have been validated 

by comparing outputs with the results published previously. In the meantime, two different case 

studies (smoky and dusty conditions) have shown that the LW radiative forcing by aerosols is 

highly sensitive to particle size and complex refractive indices of the aerosol constituents.  

 We have analyzed and quantified the effect of atmospheric humidity on the aerosol LW radiative 

forcings. It was found that the aerosol IR radiative forcing increases with decreasing atmospheric 

humidity. This finding supports our argument that the Great Basin in the USA, which usually has 
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extreme dry atmospheric conditions, can be an appropriate place to study the dry-aerosol climate 

forcing.  

An analysis on the aerosol IR backscattering effect concludes that the effect significantly 

contributes to both the BOA and TOA IR forcings, even though the aerosols do not exhibit 

absorption at all in the thermal IR. The general aerosol LW radiative forcing is, therefore, 

associated with both the absorption and scattering effects of the aerosols. Neglecting aerosol LW 

scattering will result in an underestimation of LW radiative forcing of aerosols.  

 

8.3 Future work 

Our results likely possess a significant uncertainty owing to difficulties in accurate modeling of 

the aerosols and lack of aerosol properties in the LW region. Very few studies have been carried 

out in the field related to the topic of this dissertation. More intensive work is, therefore, required 

to have detailed information about the type, shape and size, and chemical and mineralogical 

composition of the local and regional aerosols, together with the refractive indices of the aerosol 

constituents, so that we can adequately characterize the aerosols and infer their LW radiative 

effects. Complete understanding of the regional aerosol LW radiative properties help us to 

incorporate our results into regional and global climate model simulations with confidence. As 

suggested by Sokolik et al. 1993, more accurate investigations are needed to account for the 

variability of aerosol optical properties, aerosol-cloud interactions, as well as aerosol feedbacks 

resulting from a changing climate itself, for a clearer understanding of how aerosols impact the 

climate. 

Sea salt aerosols are one example of strongly scattering aerosol in the LW. Therefore the marine 

environment should be looked at closely for LW impacts by aerosols. Sea surface temperature 

obtained by IR sensing from satellite may be less accurate (biased low) in windy regions where 

rough seas may produce large amounts of sea salt aerosols.    
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APPENDIX A:  AN ANALYSIS ON ERRORS OF FTIR MEASUREMENT 

 

 

This section presents the FTIR-observed radiance sensitivity to the emissivity and temperature of 

the cold and hot blackbodies, and other possible sources of error in FTIR measurement. The 

results of the sensitivity study are displayed in Fig. A.1. 

 

       

 

Figure A.1 FTIR-observed radiance sensitivity to: (i) blackbody emissivity (ii) cold 

blackbody temperature, and (iii) hot blackbody temperature. The emissivity was decreased 

by 2% from one. The temperatures were changed from a reference value by ± 0.20°C, the 

thermistor accuracy, for each blackbody. The radiance unit ‘RU’ is 1 mW/(m
2
 Sr cm

-1
).   

 

 

[i] 
[ii] 

[iii] 
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The results represent the difference (or residual) radiance between the radiance obtained with 

some given value of the blackbody emissivity (or temperature) and the radiance obtained with the 

adjusted value of the emissivity (or temperature) of the blackbodies, as indicated in each plot.  

The emissivity of each blackbody was reduced by 2 % from the original value of one (Fig. A[i]). 

Each blackbody temperature was changed by ± 0.20°C, the thermistor accuracy, (Fig. A[ii], for 

cold blackbody, and Fig. A[iii], for hot blackbody). The blue solid curve and red dashed curve, in 

both plots [ii] and [iii], indicate the residual radiances corresponding to temperature difference of 

- 0.2°C and + 0.2°C, respectively. 

 We can draw the following conclusions based on Fig. A.1: First, the radiance is sensitive to both 

emissivity and temperature of the blackbodies. Second, the radiance sensitivity is different in 

different spectral regions. For example, the IR window region (8-13 µm) shows the strongest 

sensitivity while the 6.3 µm band shows the least sensitivity in the measured 5-20 µm region. 

Third, the radiance is more sensitive to the cold blackbody temperature than hot blackbody 

temperature. Finally, the values of the sensitivity look small, but not ignorable. 

 

Figure A.2 FTIR calibration error in percentage. 
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Fig.  A.2 depicts the FTIR calibration error in percentage, which was obtained by combining the 

errors due to blackbody emissivity and temperatures i.e. 

     [ ]  
   

 ( )
(           

      
      

 )
 
  

where             is the error due to 2% decrease in the blackbody emissivity,      is the error 

due to 0.2°C increase in cold blackbody temperature, and       is the error due to 0.2°C increase 

in hot blackbody temperature.  ( ) is the original radiance value. The error is as high as 108% in 

the window region, and is mostly contributed by error in the emissivity. 

 The non-linear response of the detector voltage to the target radiance (as opposed to our 

assumption of the linear response) and wavenumber dependency of the blackbody emissivity (we 

have used a fixed value of emissivity for all wavenumbers) can be other inherited sources of error 

in the instrument. In addition, the liquid-nitrogen-cooled detector may not be cold enough to be 

able to respond very weak signals from extremely cold targets. The FTIR measurements are, 

therefore, erroneous, at least, due to these issues. The uncertainties help us approximate the 

amplitude of the error bars present in the measurement. We performed sensitivity studies only for 

the emissivity and temperature because these are the principal observable sources of errors in the 

instrument.  

  

Figure A.3 FTIR measurement vs. clear sky simulation for 01 May 2014 at 05:00 LST (left) 

and (measurement-simulation) residual radiance (right).  
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Figure A.4 Reno’s sounding for 01 May 2014 at 05:00 LST with precipitable water of 2.55 

mm. 

 

 

Fig. A.3 (left) shows the radiance measurement with FTIR and simulation with LBLRTM (left) 

for a clear day (01 May 2014 at 05:00 LST). The simulation used the sounding profile of Fig. A.4 

which has a precipitable water (PW) of 2.55 mm.  The residual radiance between the FTIR 

measurement and LBLRTM simulation is shown in Fig. A.3 (right). The residual is caused by 

various factors as discussed in section 5.1 along with the uncertainties just mentioned. 

In order to see if the fractional difference between the radiances calculated with and without 

aerosols is larger than the FTIR calibration error, we overlaid Fig. A. 2 on the theoretical  

fractional radiance plot calculated for 24 April 2014 at 08:00 LST, a typical day in Reno (Fig. 

A.5) using the following equation: 

                    
|                         |
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Figure A.5 FTIR calibration error (red dotted curve) of Fig.  A.2 is overlaid on the 

fractional radiance plot for our typical day of 24 April 2013 at 08:00 LST (blue solid curve), 

both are expressed in percentage. 

 

Since the fractional radiance is larger than the FTIR calibration error for most of the 

wavenumbers in the IR window region, the instrument can detect the fractional radiance by 

aerosol on typical days. FTIR calibration error also depends on the atmospheric conditions such 

as relative humidity. This is because the sensitivity of the photo-detector depends on the strength 

of the signal from the atmosphere, especially in the window region. A very moist atmosphere has 

less error than a very dry atmosphere. Similarly, the fractional radiance is also less for a moist 

atmosphere than for a dry atmosphere. These facts suggest that the FTIR calibration error must be 

calculated separately for each measurement. 

 


