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Abstract 

 

Accurate atmospheric aerosol characteristics derived from satellite measurements are 

needed over a variety of land surfaces. Inhomogeneous and bright surface reflectance 

across California and Nevada may be a contributing factor in the discrepancies observed 

between ground based and satellite-retrieved atmospheric aerosol optical depth (AOD). 

We developed and deployed a compact and portable instrument to measure albedo to 

evaluate a major factor that influences the accuracy of AOD retrievals. The instrument 

functions as a spectral albedometer using two Hamamatsu micro-spectrometers with a 

spectral range from 340 –780 nm for measuring incident and reflected solar radiation at 

the surface. The instrument was operated on an unmanned aircraft system (UAS) to 

control areal averaging for comparison with satellite derived albedo from NASA 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Land Satellite 7 

Enhanced Thematic Mapper Plus (Landsat-7 ETM+). The instrument was deployed on 

October 5th, 2017 under clear skies over Nevada’s Black Rock Desert to investigate a 

region of known high surface reflectance. It was found that satellite retrieved surface 

reflectance underestimated measured surface albedo at this location, indicating the need 

for more albedo measurements to validate satellite retrievals over areas of complex 

terrain in the Western U.S. This study demonstrates the viability of obtaining 

hyperspectral surface albedo measurements via UAS as an intermediary between fixed-

point ground measurement and space-borne observations.    
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Chapter 1  Introduction 

1.1 Background 

Atmospheric processes are driven by the global distribution of solar energy absorbed and 

reflected by the Earth’s surface. The amount of energy that the Earth absorbs or reflects 

over a given area is dependent on surface cover. Albedo, an important driver of the 

Earth’s climate system, is a measure of surface reflectivity. The Earth’s radiative balance 

can be affected by small changes in albedo such as those due to land use change, 

deforestation, fires, snow and ice cover. The Earth’s average global albedo is being 

affected by anthropogenic activities such as urbanization, and the presence of aerosols in 

the atmosphere which can be deposited onto snow (Schmitt et al., 2015). Accurate 

measurements of surface albedo are needed for understanding the climatological 

ramifications of land use change, reducing uncertainties in global climate models 

(Brovkin et al., 2013), and improving satellite retrievals of aerosol optical depth (AOD) 

(Zhang et al., 2016). However, the effects of albedo changes on global radiative forcing 

are still highly uncertain due to the wide range of estimates of anthropogenic and natural 

land cover change (Myhre, Bréon, Aamaas, & Jacob, n.d.). More comprehensive methods 

for accurately measuring regional albedo over time are needed. 

 

Quantifying albedo is made complicated because it varies in both space and time (Jonsell, 

Hock, & Holmgren, 2003) and it is highly dependent on solar zenith angle. It is a 

dimensionless quantity that can be defined as the ratio of the solar irradiance reflected 

from the Earth’s surface to that which is incident upon it (He, Liang, & Song, 2014). 
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Albedo is measured as the hemispherical reflectivity of a surface as a function of 

wavelength (Taha, 1997); therefore, an ideal albedo measuring device must have a good 

cosine response and be multispectral. Broadband albedo ground measuring devices, such 

as pyranometers, are widely used in the field yet only provide a single average 

measurement across a wide spectral range. Global networks, such as NOAA’s Surface 

Radiation (SurfRad) network and the Department of Energy’s Atmospheric Radiation 

Measurement (ARM) network utilize broadband pyranometers and narrowband 

radiometers on fixed towers for measuring albedo but are limited by the spatial footprint 

they can sense. The limitations of sparsely distributed broadband albedo measurements at 

the surface are reduced by the use of satellites to estimate surface albedo over areas 

where towers are not present. Yet, satellites used for measuring atmospheric parameters 

have their own shortcomings.  

 

Earth observing satellites are capable of providing global coverage of surface albedo; 

however, accurately estimating albedo from space-borne platforms can be challenging 

due to the variability in spatial and temporal conditions of the surface and atmosphere. 

Additionally, there are not enough ground-based measurements to evaluate satellite 

retrievals, and spatial interpolation of existing ground-based measurements may not fully 

represent local or even regional areas. Acquiring satellite-derived measurements with 

high accuracy can be especially challenging over regions of complex terrain and in semi-

arid environments such as the Western U.S. (Loría-Salazar et al., 2016; Sorek-Hamer et 

al., 2015).  
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Loria-Salazar et al. (2016) found that satellite retrievals of aerosol optical depth (AOD) 

can be affected by underlying high surface reflectance; specifically, Zhang et al. (2016), 

report that an error of 0.01 in estimated surface reflectance has been shown to translate to 

an error of 0.1 in satellite retrieved AOD. This is a particularly strong problem in the 

Western U.S., and it hinders the ability to ground truth columnar aerosol estimations and 

surface reflectance observations over these areas.  

 

Unmanned Aircraft Systems (UAS) and other small aircraft observations have the 

potential to provide cost-effective, low-altitude columnar and surface measurements for 

atmospheric science applications. They can provide optical observations of the surface 

with greater accuracy than conventional high-altitude satellites and manned airplanes due 

to the reduced effect of atmospheric extinction and higher spatial resolution (Uto, Seki, 

Saito, Kosugi, & Komatsu, 2016). Reductions in sensor size has resulted in smaller and 

more robust instrumentation capable of flying onboard small unmanned aircrafts. 

Additionally, smaller instruments for UAS are designed to be portable in contrast to 

existing commercial pyranometers which are designed to be stationary. Other handheld 

field spectroradiometers are often bulky, expensive and require additional equipment to 

operate. We address the need for more portable ground-based measurements for 

evaluating satellite retrievals over areas of known high surface reflectance through the 

development of a novel multispectral albedometer for measuring hemispherical albedo. 

We introduce a new method for obtaining albedo measurements, through a unique 

instrument design which enables the instrument to be flown on UAS. 
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1.2 Satellite Platforms 

 

Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument onboard 

NASA’s Terra and Aqua satellites which collects global atmospheric measurements twice 

daily, once in the morning (Terra) and again in the afternoon (Aqua). The 

MOD09GQ/MYD09GQ surface reflectance product for Terra and Aqua satellites, 

respectively, is obtained after atmospherically correcting top of the atmosphere (TOA) 

radiance measurements (E. F. Vermote et al., 2002). MODIS obtains TOA radiance 

measurements over 36 wavelength bands, of which 7 bands are corrected to provide 

surface albedo [bands 1 (620-670 nm), 2 (841-876 nm), 3 (459-479 nm), 4 (545-565 nm), 

5 (1230-1250 nm), 6 (1628-1652 nm), and 7 (2105-2155 nm)] (E. F. Vermote, Roger, & 

Ray, 2015). In addition, MODIS provides a surface albedo 8-day best product 

(MOD09Q1) which is a composite of MOD09GQ and contains the best possible 

observation over an 8-day period selected based on high observation coverage, low view 

angle, the absence of clouds or cloud shadow, and aerosol loading.  

 

Similar to MODIS, NASA’s land satellite 7 enhanced thematic mapper plus (Landsat 7 

ETM+) obtains surface albedo values at 8 spectral bands with higher spatial resolution 

than MODIS (30 m compared to 250 m – 1 km, respectively). Landsat7 ETM+ spectral 

coverage ranges from visible to infrared with specific band designations from 450-520 

nm, 520-600 nm, 630-690 nm, 770-900 nm, 1550-1750 nm, 2090-2350 nm, and 10400-

12500 nm for bands 1-7, respectively and an additional panchromatic band from 520-900 

nm (Barsi, Lee, Kvaran, Markham, & Pedelty, 2014).   
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The presence of gases in the atmosphere absorb and scatter both incoming and reflected 

sunlight. To account for the alteration in observed radiant energy caused by these gases it 

is necessary to apply an atmospheric correction to the observed top of the atmosphere 

radiance. Information on gaseous concentrations present in the atmosphere between the 

observing satellite and the Earth’s surface at the time of measurement is gathered through 

other ground and satellite observations; Atmospheric inputs of ozone and pressure are 

acquired from the National Centers for Environmental Prediction (NCEP) while aerosol 

and water vapor are derived directly from MODIS (“Modis Land Surface Reflectance - 

Home,” n.d.).  The atmospheric corrections used by Landsat and MODIS to derive 

surface reflectance are similar. Atmospheric conditions such as water vapor, ozone, 

geopotential height, aerosol optical thickness, and digital elevation are input along with 

Landsat data into the “Second Simulation of a Satellite Signal in the Solar Spectrum” 

(6S) radiative transfer models to generate the surface reflectance product (USGS, 2018). 

The MODIS atmospheric correction assumes a Lambertian surface and adjusts the 

atmospheric correction algorithm for non-Lambertian surfaces as well as for 

heterogeneous landscapes. 

 

The surface albedo products are meant to represent surface conditions as they would be if 

the measurement were made at the ground surface (E. F. Vermote et al., 1997) and 

therefore, it is fair to expect that the albedo measurements obtained using the instrument 

developed in this study should agree with satellite values. Previous studies have 

evaluated satellite surface albedo using ground-based networks as well as inter-
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comparisons between space-borne instruments. (Claverie, Vermote, Franch, & Masek, 

2015; Liu et al., 2017; Pinty et al., 2011). Generally, MODIS satellite and ground-based 

measurements of albedo agree over vegetated landscapes (Heikkinen et al., 2007; 

Maiersperger et al., 2013; Mira et al., 2015). We aim to provide insight for comparison 

over complex, semi-arid desert terrain using unmanned aircraft.   

 

1.3 State of the Art 

 

Broadband albedometers are available and widely used by the scientific community. 

Broadband albedometers and pyranometers can be used for validating broadband albedo 

products; however, spectral albedo products are rarely validated using ground 

measurements (Zhou, Wang, & Liang, 2018). Typical high resolution spectral measuring 

devices like the Analytical Spectral Device (ASD) Field spectroradiometer are only able 

to sense over a small area. The micro-spectrometers utilized in our albedometer allow it 

to be a portable and an inexpensive alternative to other hyperspectral radiometers for 

spectral albedo validation studies. The albedometer developed in this work also features a 

suite of additional sensors to measure pressure, humidity, surface and air temperature, 

track position and altitude, record tilt, take photos, and communicate via radio, making it 

an all-in-one albedo measuring device.  

 

Previous work to develop albedometers has consisted mainly of long poles with a 

commercial pyranometer or spectrometer attached to the end to be used for surveying on 

foot (van der Hage, 1992). This technique is inconveniently heavy and often requires 
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extra equipment to operate and data log. These studies also lack the ability to mount the 

instrument on an unmanned aircraft system. Although, albedometers have been 

previously mounted onto small planes (Coddington et al., 2008; Wendisch et al., 2001), 

fewer studies to measure albedo from UAS have been performed. Uto et al. (2016) 

developed a low-cost hyperspectral whiskbroom imager for UAS applications using 

similar Hamamatsu micro-spectrometers to those used in the present work. Kipp & 

Zonen advertise one study by Goodale & Fahey Labs at Cornell University who mounted 

CMP6 and CMP3 pyranometers to a UAS (“Novel Estimation of Albedo Using a Drone 

Pyranometer - Kipp & Zonen,” n.d.). In this application the airborne pyranometer faced 

downward to measure reflected solar radiation and a nearby tower equipped with an 

additional pyranometer was used for measurements of downwelling solar radiation. This 

process not only limits the study location to be near a fixed tower but the downwelling 

solar radiation reaching the surface may vary from the location of the tower to the 

location of the UAS. In this case, albedo can only be obtained during post processing of 

the data whereas, the albedometer we have developed obtains incoming and reflected 

radiation simultaneously at the same location and displays albedo values in real time 

through radio communication to a handheld ground control device.  

 

This thesis is organized as follows. Chapter 2 and 3 describe the design and development 

of the albedometer. Chapter 4 details the deployment of the instrument to Nevada’s Black 

Rock Desert (BRD). Chapter 5 presents the results of our albedo measurements from the 

BRD campaign and discusses comparison to satellite retrieved values. Chapter 6 includes 
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our thoughts and limitations of the comparison study as well as future developments and 

applications for the instrument. 
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Chapter 2  System Specifications 

The instrument consists of two parts. The first part is a measuring device mounted to the 

aircraft (~300 g) which houses two micro-spectrometers and six additional sensors 

(figures 1.a, 1.b, and 1.c). The second part is a handheld display and ground control 

device (~ 133 g) to initiate collection and display real-time data from the measuring 

device (figure 1.d). The measuring device is enclosed in a 3D-printed polylactic acid 

(PLA) casing with a custom mount built-in to the design of the box (figure 1.c). Both 

parts are powered by 9V batteries and can operate for multiple hours. Teensy3.6 and 3.2 

microcontrollers are used to control signal processing for each part, respectively (“Teensy 

USB Development Board,” n.d.). The Teensy3.6 microcontroller has a built-in real-time 

clock with battery backup capability for time and date.  To measure albedo, two micro-

spectrometers manufactured by Hamamatsu Photonics, each with a spectral range of 340 

–780 nm, are utilized; one for obtaining the downwelling solar radiation and the other for 

measuring the solar radiation reflected from the surface. Albedo values range from 0 to 1 

and are calculated as the ratio between reflected light from the surface (downward facing 

spectrometer) and incident light (upward facing spectrometer) after first subtracting out 

the dark counts, dividing by the integration time, and applying a transfer function 

(equation 1). Equations for modeling the dark current and deriving the transfer function 

are further discussed in Chapter 3.  

 

𝐴𝑙𝑏𝑒𝑑𝑜 (𝜆) =  
𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑓𝑎𝑐𝑖𝑛𝑔 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟

𝑈𝑝𝑤𝑎𝑟𝑑 𝑓𝑎𝑐𝑖𝑛𝑔 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟
 . 

(eq. 1)    
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The uncertainty for albedo measurements is also calculated with every measurement for 

each wavelength (equation 2). Spec1 and Spec2 are the counts (with dark counts 

subtracted) from the upward facing and downward facing spectrometers, respectively.  

 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝜆) = 𝐴𝑙𝑏𝑒𝑑𝑜 ∗ 0.5 ∗ √
1

𝑆𝑝𝑒𝑐1
+

1

𝑆𝑝𝑒𝑐2
 . 

(eq. 2)    

                                

Additional components on the instrument include a GPS for position, altitude, and time; a 

digital level and compass for measuring instrument orientation; temperature, pressure and 

humidity sensors; an infrared sensor to measure ground temperature; a camera for 

measuring sky conditions; a radio for two-way communication between the devices; and 

a micro SD card for recording data (figure 2). Specific connections for all components in 

the design of the albedometer are shown in the circuit board schematic in Appendix 1 and 

the code used to run the instrument is provided in Appendix 2.  
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Figure 1: Albedometer design. 1.a. Top view of measuring device showing upward facing 

spectrometer and camera. Aluminum tape was added to maintain cool temperatures inside the box 

and a UV/IR filter was placed over the camera to capture more natural looking images. 1.b. Side 

view of measuring device showing the GPS and 9V battery which sit outside of the box. 1.c. Side 

view of measuring device showing the custom 3D-printed mount built-in to the box. 1.d. Ground 

control device showing radio for communicating to the measuring device, a button for initiating 

measurements, a screen for printing resulting albedo in real-time, and the Teensy 3.2 

microcontroller.  

 

a.) b.) 

c.) d.) 
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Figure 2: Albedometer components. 2.a. Top view of printed circuit board including components 

(from left to right, top to bottom): BME280 temperature sensor, BNO055 absolute orient, 

APC220 radio, Teensy 3.6 microcontroller, C12666MA micro spectrometer, Back-up 

battery, VC0706 camera, UBX-G7020 GPS. 2.b. Bottom view of printed circuit board 

including components: C12666MA spectrometer with diffuser, and MLX90614 Infra-Red (IR) 

sensor. 

 

2.1  Components 

 

2.1.1  C12666MA Micro-spectrometer  

The Hamamatsu micro-spectrometers used for obtaining albedo feature an ultra-compact 

design with size dimensions 20.1 x 12.5 x 10.1 mm and mass of 5 g. The manufacturer 

specifications indicate a spectral range from 340 to 780 nm and a spectral resolution of 

15 nm. In this application we only considered 400 to 750 nm due to low counts below 

400 nm. 
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2.1.2  Teensy 3.6/3.2 microcontroller 

A 32-bit, 180MHz ARM processer controls the functionality of the system. The 

microcontroller performs analog to digital conversion with a 13-bit read resolution and is 

programmed using the Arduino integrated development environment.  

 

2.1.3 BME 280 pressure, temperature, & humidity sensor  

Digital readings of pressure, temperature and humidity were obtained in conjunction with 

every observation. The Bosch sensor is able to measure conditions within the control box 

with a response time of 1 s and was incorporated into the instrument design using the 

inter-integrated circuit (I2C) interface. The pressure and temperature measurements were 

useful for determining the height of the UAS above the surface.   

 

2.1.4 BNO055 absolute orientation 

The Bosch absolute orientation sensor was used to measure the tilt angle of the 

instrument relative to the vertical coordinate. The level reading was used as a data 

qualifier. Only measurements obtained when the aircraft was within a 5-degree offset in 

the x- and y- horizontal directions were used in our analysis.  

 

2.1.5 VC0706 TTL Serial Camera 

The onboard camera developed by Adafruit Industries was used to document the sky 

conditions at the time of measurement. The images were saved and serve as an additional 
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data qualifier for properties of the radiation field at the time of measurement, e.g., 

detecting cloud cover.  

 

2.1.6 UBX-G7020 GPS 

The geographic position, altitude and time of each observation is obtained and recorded 

with every measurement. This information was used for geo-referencing satellite albedo 

measurements and to verify the height above ground level of each measurement. The 

GPS time was used in addition to the real time clock on the Teensy.  

  

2.1.7 APC220 radio 

Radios on both devices were used to establish two-way communication between the 

payload and the ground control unit. The ground control unit is used to initiate a 

measurement. the measuring device onboard the UAS sends measurements to the ground 

for display to evaluate operations in near real time.   

 

2.1.8 Nokia Screen 

Periodic updates of each measurement were printed to a screen on the hand-held unit and 

resulting albedo was plotted after each measurement.  

 

2.1.9 MLX90614 Infra-Red (IR) sensor 

The onboard IR thermometer faces downward to capture noncontact measurements of 

surface temperature with a temperature range from -70° to 380°C and a temperature 

accuracy of ±0.5°C. The detector has a field of view of approximately 100° with a peak 
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zone around 0° where the measured value is the average temperature of all objects in the 

field of view. 

 

2.1.10 SD card 

All data parameters and camera images were saved to a 2-GB SD card. The SD port is 

built into the Teensy 3.6 microcontroller. 

 

2.1.11 Real-time clock  

The real-time clock is built-in to the Teensy 3.6 microcontroller and was used for 

recording the time at which each measurement was taken. It is manually set once upon 

installation and reports both time and date.  
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Chapter 3  System Calibration and Testing 

3.1 Diffuser Transmissivity 

 

In order to control the amount of solar radiation entering the detector, diffusers were 3D 

printed and fitted to each spectrometer. The diffusers were characterized for their 

transmissivity, angular response, and fluorescence. The transmissivity of the 3D-printed 

diffusers was tested using an Ocean Optics HR2000 spectrometer. Overall the diffusers 

allow 0.1% of light through and even less below 400 nm (figure 3). It was found that 

below 400 nm the diffusers let in very little light and because of this our study only 

focuses on 400 nm and above. Additional motivation for characterizing the transmissivity 

of the 3D-printed diffusers was to check for any unwanted fluorescence. It was found that 

certain types of PLA fluoresced, however the final PLA diffusers used in the instrument 

design showed no signs of fluorescence. This experiment demonstrated that the PLA 

diffuser spectral response was similar to commonly used PTFE diffusers.  
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Figure 3: Transmissivity of PLA and Teflon diffusers using Ocean Optics HR2000 spectrometer. 

Both types of diffusers allowed very little light through (<1%). PLA was incorporated into the 

instrument design over PTFE due to the fact that it allowed slightly more light through. The 

transmissivity decreases rapidly below 400 nm and for this reason we chose to limit the spectral 

range of our results to 400 nm. 

 

3.2 Angular Response 

 

In order to be considered a proper solar irradiance detector, the instrument should have a 

response that scales with the cosine of the zenith angle. An experiment to test the cosine 

weighting of the instrument was performed using a light source and a lens. The set up for 

testing the cosine response of the detector is shown in figure 4. The onboard absolute 

orientation sensor was used to record the zenith angle and measurements were taken 

every few degrees through controlled tilting of the instrument. Overall, the instrument has 

a good cosine response which is made apparent by the cosine curve generated by plotting 

the detector counts as a function of zenith angle (figure 4).  
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Figure 4: The cosine response of the instrument was measured to ensure proper use as an 

irradiance detector. Counts from the spectrometer at 621 nm were recorded from tilting the 

detector every few degrees. The experimental set-up involved a light source and a lens to focus 

the light evenly onto the detector.  

 

3.3 Temperature Compensation 

 

An experiment to model the dark counts of the spectrometers was performed using two 

environmental chambers: a toaster oven and a freezer. The spectrometer along with a 

temperature sensor were breadboarded and subjected to extreme operating temperatures. 

A second-degree polynomial fit was taken from the resulting curve and equations for 

modeling the dark counts with respect to temperature in degrees centigrade were found 

for each spectrometer (equations 3.a and 3.b). Temperature inputs for equations 3.a and 

3.b (temp) are obtained from the onboard BME 280 pressure, temperature, & humidity 

sensor. 
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𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝐷𝑎𝑟𝑘𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟1 =  0.010593 ∗ (𝑡𝑒𝑚𝑝2) +  0.062132 ∗ 𝑡𝑒𝑚𝑝 + 719.9529. 

(eq. 3.a) 

𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝐷𝑎𝑟𝑘𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟2 =  0.010715 ∗ (𝑡𝑒𝑚𝑝2) +  0.062741 ∗ 𝑡𝑒𝑚𝑝 + 727.0078. 

(eq. 3.b) 

 

The dark count range uncertainty was found to be approximately 15 counts, where typical 

total counts are around 6000.  The same procedure was done for each spectrometer, and it 

was found that the two spectrometers differed by less than 10 counts. Experimental 

analysis was performed such that the dark counts were averaged over all the wavelengths. 

Differences in the response times of the temperature sensor and the spectrometer caused 

the resulting hysteresis curve (figure 5). Discrepancies in the results could be due to the 

fact that the temperature sensor was not in direct contact with the spectrometer, and 

therefore did not represent the spectrometer actual temperature but instead the 

environmental temperature. Per manufacturer recommendations and to avoid 

condensation, we did not test below 5 °C.  
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Figure 5: The two spectrometers onboard the instrument were tested and corrected for their 

temperature dependence. The hysteresis curve is a result of the temperature measurements and the 

spectrometer counts not changing at the same rate. A second-degree polynomial fit was taken 

from the resulting curve and equations for modeling the dark counts of the spectrometer with 

respect to temperature were incorporated. This is done due to provide the dark counts while the 

instrument is flying.   

 

3.4 Transfer Function 

 

A transfer function was calculated in order to correct for the differences between the two 

spectrometers and the slight variation in their diffusers (equation 4). Dark subtracted 

counts from each spectrometer were used for calculation in equation 4. The instrument 

was carefully flipped to obtain an upward and downward facing measurement for each 

spectrometer.    

 

𝐻(𝜆) =  √
𝑆𝑝𝑒𝑐2 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑

𝑆𝑝𝑒𝑐1 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑
∗

𝑆𝑝𝑒𝑐2 𝑈𝑝𝑤𝑎𝑟𝑑

𝑆𝑝𝑒𝑐1 𝑈𝑝𝑤𝑎𝑟𝑑
 . 

(eq. 4) 



21 
 

 

This was done by taking multiple measurements over the same surface. Nine 

measurements taken over a grass and concrete covered area were averaged for each 

wavelength (figure 6). The average was then applied to the output of one spectrometer in 

order to equal the other when measuring the same irradiance.  

 

 

Figure 6: A transfer function to account for the differences in the two micro spectrometers was 

calculated. Multiple measurements were taken over the same surface and the average was applied 

to one spectrometer in order to “equal” the other. 

 

Final albedo is calculated according to equation 5, where dark counts are subtracted from 

spectrometer counts and normalized by the integration time. The transfer function (H) is 

then applied to the upward facing spectrometer, Spec1.  

 

𝐴𝑙𝑏𝑒𝑑𝑜 (𝜆) =  
𝑆𝑝𝑒𝑐2 − 𝐷𝑎𝑟𝑘 

𝑖𝑛𝑡 𝑡𝑖𝑚𝑒

(
𝑆𝑝𝑒𝑐1 − 𝐷𝑎𝑟𝑘

𝑖𝑛𝑡 𝑡𝑖𝑚𝑒
) ∗ 𝐻(𝜆)

 .   (eq. 5) 
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3.5 Preliminary Experiments 

 

Initial testing of the instrument was performed over heterogeneous surfaces around the 

University of Nevada, Reno (UNR) campus. Surface reflectance of common surface 

types were examined: vegetation, dead vegetation, concrete, asphalt, blue paint, and 

mixed vegetation (figure 7). For verification, the results were qualitatively compared by 

eye with the USGS (United States Geological Survey) online spectral library. Overall the 

instrument performed well with appropriate vegetation, blue paint, and asphalt spectral 

signatures. 

  

Figure 7: Initial testing of the instrument was performed over various surfaces (right) around the 

University of Nevada, Reno campus. The observed spectral signatures align with expected 

signatures for the examined surface types. The data collected here were obtained using the 

instrument in the handheld version. 

 

In addition to the tests performed at UNR, a prototype of the instrument was taken to the 

Peruvian Andes for glacier albedo measurements. In this application, the instrument was 

used in the handheld mode and mounted on a trekking pole in order to facilitate use in 
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mountaineering applications (figure 8). The Peru expedition served to validate the 

portability, ease of use of the instrument, and functionality of the instrument as a 

handheld device. Lastly, for establishing proof of concept, the instrument was first flown 

onboard an unmanned aircraft at Silver Knoll Ranch located north of Reno. Preliminary 

airborne data was retrieved successfully with no radio interference between the aircraft 

and the ground control unit. The instrument mounting design proved to be sufficient for 

flying. The Silver Knoll Ranch expedition was meant as a practice run for the Black Rock 

Desert deployment.  

 

 

Figure 8: Left photo. Undergraduate Chris Stevens using the Albedometer prototype mounted to 

the end of a trekking pole in handheld mode on a glacier in the Cordillera Blanca, Peru. Right 

photo. Albedometer mounted to end of copper pole on DJI Matrix 600 Pro hexacopter at Silver 

Knoll Ranch for a test flight.  
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Chapter 4  Nevada Black Rock Desert Measurements  

The instrument was deployed in Nevada’s Black Rock Desert under clear sky conditions 

on October 5th, 2017. The apparently homogeneous terrain of the Black Rock Desert was 

chosen as our study location for its known high surface reflectance. The quintessential 

surface of the Black Rock Desert is representative of other areas known to also have a 

high surface reflectance in the Western U.S. To obtain albedo, the measuring device was 

mounted onto a DJI Matrix 600 Pro Hexacopter. The rotary wing aircraft has dimensions 

525 × 480 × 640 mm with a total weight (including batteries) of 10 kg and a 

recommended payload weight of 5.5 kg. With all payload attachments onboard, the 

aircraft was capable of flying for approximately 20 minutes. The instrument was mounted 

onto a carbon fiber pole which extended out from the aircraft to limit the aircraft’s 

influence on the radiation field (figure 9). The aircraft was manually piloted over two 

surface types at four heights above ground level (AGL): 100, 200, 300 and 393 feet to 

simulate the spatial sensing area of MODIS. At 100ft AGL the ground field of view 

matches the 500 m spatial resolution of MODIS with a detector field of view of ~166° 

(Appendix 4). Over 90% of the measured signal is received with an 80° instantaneous 

field of view (IFOV) and was therefore assumed for the ground IFOV calculation. Flights 

were made as close to solar noon as possible and during flights the instrument was 

oriented to face the sun to avoid disturbances to the radiation field due to shadowing. 
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Figure 9: Configuration of instrument mounted to UAS. A long pole, approximately 2 m in 

length, was used to extend the instrument away from the body of the aircraft. This was done to 

limit the effects of the aircraft on albedo measurements, specifically those which would change 

the surrounding radiation field. 

 

Measurements were obtained over two locations, designated in figure 10, as the red and 

blue circles for road and nonroad, respectively. The physical appearance of the two 

locations varied, however their compositions were believed to be similar. In one location, 

denoted “road”, the ground surface had been consistently driven over as a means in and 

out of the yearly Burning Man event, which had taken place the previous month. The 

“nonroad” location showed less evidence of vehicle tracks and showed no distinct 

disturbance from car tracks. In other words, the tracks appearing over the location of the 

nonroad observations were sparse and random compared to the road location. Five 

measurements were obtained at four different heights above each road and nonroad 

location. Per Federal Aviation Administration (FAA) Part 107 regulation, our flight 

height was restrained to below 400 feet (PART 107 - SMALL UNMANNED 

AIRCRAFT SYSTEMS, 2016).  
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a.) 

b.) 
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Figure 10: Field site locations. 10.a. Overview of Black Rock Desert (BRD) located North of 

Reno. 10.b. Zoomed-in Google Earth image over the BRD showing proximity to annual Burning 

Man Festival (the half circle). 10.c. Zoomed in Google Earth image over the location where 

measurements were made. The blue circle (most north) represents where our “nonroad” 

(40.749586, -119.261153) measurements were taken, the red circle (most south) represents the 

“road” area (40.748192, -119.258969) and the black circle in the middle indicated as “HOME” 

(40.748345, 119.263186) was the location where we were standing.  

 

  

c.) 
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Chapter 5  Albedo Measurements and Discussion 

Comparisons of UAS and satellite retrieved surface reflectance values over Nevada’s 

Black Rock Desert (BRD) are presented. Five albedometer measurements at each height 

AGL were averaged and compared to single pixel values from MODIS and LANDSAT. 

For MODIS, the pixel value for road and nonroad areas were the same due to the large 

spatial resolution (250 m for band 1 and 500 m for bands 3 and 4). The 30 m resolution of 

LANDSAT7 ETM+ allowed for distinguished pixels to compare to road and nonroad 

areas.  

 

In general, nonroad measurements exhibited a higher albedo than those obtained over the 

road location; likely due to the surface of the road area being more non-Lambertian. 

Measured albedo over nonroad locations ranged from ~0.35 at 400 nm to ~0.60 at 750 

nm and from ~0.30 at 400 nm to ~0.50 at 750 nm over road locations (figures 11, 12, 13, 

and Appendix 3). Over both road and nonroad locations albedo tended to decrease with 

increasing height AGL. In other words, albedo measurements made closer to the surface 

were slightly greater than those made hundreds of feet above the surface. This can likely 

be attributed to the differences in the amount of atmosphere present between the 

albedometer and the surface. At greater heights AGL, there is more atmosphere to 

contribute to the scattering of reflected shortwave radiation. Additionally, at greater 

heights the detector is sensing over a larger spatial area which could contribute to the 

overall variability in the measurements. The observed range in measured albedo from the 

lowest height to the highest height (100 to 393 ft) was within 0.05 over road and nonroad 

locations, indicating that the effect of height AGL was less than the effect of road or 
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nonroad location. Additionally, at greater heights above the surface the field of view of 

the detector is also greater, and therefore albedo measurements are averaged over larger 

areas, giving rise to differences in albedo with change in height.  

 

In comparison to Aqua MODIS, measurements obtained with the albedometer were 

higher across all MODIS bands, with errors of ~26% averaged over road and ~34% 

averaged over nonroad areas (figure 11). A similar trend was observed for comparison to 

Terra MODIS, with all bands underestimating albedometer values by an average percent 

error of approximately 26% for road and 34% for nonroad. (figure 12). When compared 

to MODIS 8-day best values, measured and retrieved values were closer in range than 

daily MODIS retrievals (figure A4 in Appendix 3). In comparison to LANDSAT 7 

ETM+, measurements obtained with the albedometer were again higher across all bands 

(figure 13). However, LANDSAT 7 ETM+ values were closer to albedometer measured 

values than MODIS (percent error ~15% over road and ~14% over nonroad), likely due 

to the enhanced spatial resolution.  
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Figure 11: Albedometer measurements obtained over Nevada’s Black Rock Desert on October 

5th, 2017 and comparison to AQUA MODIS retrieved surface reflectance.  

 

Figure 12: Albedometer measurements obtained over Nevada’s Black Rock Desert on October 

5th, 2017 and comparison to TERRA MODIS retrieved surface reflectance. 
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Figure 13: Albedometer measurements obtained over Nevada’s Black Rock Desert on October 

5th, 2017 and comparison to LANDSAT 7 ETM+ retrieved surface reflectance. 
 

 

To address the sense of variability in the satellite products, histograms were generated for 

neighboring LANDSAT pixels around road and nonroad locations (figure 14 and 15). 

Local values were found to be in the vicinity of albedometer measurements for both road 

and nonroad locations indicating localized homogeneity. However, there appears to be a 

wider range of albedo values over the road location compared to the nonroad location 

which implies a greater variation in the road surface. Measured albedo from the UAS 

were in the range of neighboring pixel values for LANDSAT. Histograms of neighboring 

pixels for MODIS were not used due to the high spatial resolution of the sensor.  

 

In addition to neighboring pixels, a histogram of pixel values across the entire Black 

Rock Desert was made to assess the homogeneity of the desert surface (figure 16). The 

region chosen to represent the Black Rock Desert is shown in figure 17 as the blue 
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shaded area. All valid pixels in the region of interest are incorporated into the histogram 

in figure 16, excluding missing data and over saturated pixels. The histogram had a wide 

range of albedo values across the entire desert for bands 1, 2, and 3, while band 4 albedo 

values were mostly within 0.4 – 0.5 range. This indicates that the Black Rock Desert is 

heterogeneously bright. The more consistent grouping of observed pixel values at band 4 

is likely representative of a common surface type known to be present in dry lake beds 

such as the BRD. The saline minerals present in playas exhibit absorption features in the 

near-infrared bands, and their reflectance in the VNIR is highly dependent on moisture 

content (Crowley, 1991). The spread of albedo values obtained from LANDSAT across 

the BRD is likely a consequence of some parts being more wet than others for at least 

certain parts of the year. Brightness of the BRD playa is therefore likely to be sensitive to 

weather patterns and seasonal variation.  

 

 

Figure 14: Histogram of neighboring LANDSAT pixels over road location on October 5th, 2017. 

 



33 
 

 

Figure 15: Histogram of neighboring LANDSAT pixels over nonroad location on October 5th, 

2017. 

 

Figure 16: Histogram of all LANDSAT pixels over Nevada’s Black Rock Desert on October 5th, 

2017. 16.a. Band 1 (450-520 nm). 16.b. Band 2 (520-600 nm). 16.c. Band 3 (630-690 nm). 16.d. 

Band 4 (770-900 nm). 
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Figure 17: LANDSAT tile over Nevada’s Black Rock Desert. Region of interest used to generate 

LANDSAT histogram is shaded in blue. 
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Chapter 6  Conclusions 

The instrument development goal of this research was to develop a lightweight 

multispectral instrument to measure albedo. The primary application was to measure the 

albedo of a representatively bright area of the Black Rock Desert for comparison with 

MODIS albedo, ultimately in relation to issues with aerosol optical depth retrievals from 

MODIS observations.  Our albedometer also serves as a general tool for quantifying 

surface albedo at a variety of time and length scales. It has broad applications for use in 

climate change research and environmental monitoring. The instrument is an inexpensive 

alternative to existing commercial devices and could serve as a great addition to field 

instrumentation.  The design of the instrument allows for measuring the albedo of 

glaciers in mountaineering environments, for airborne measurements from aircraft, and 

for ground-based measurements over complex terrain.  

 

We deployed the instrument for a desert environment to evaluate our measurements 

against satellite retrieved surface albedo. This was done to evaluate a major factor that 

influences the accuracy of satellite AOD retrievals. The discrepancies observed between 

ground based and satellite-retrieved atmospheric aerosol optical depth in the Western 

U.S. are likely due to the underestimation of surface reflectance over complex terrain. 

MODIS and LANDSAT surface reflectance consistently underestimated measured albedo 

across all spectral bands. This underestimation in surface reflectance likely contributes to 

an overestimation in observed aerosol optical depth. It was found that LANDSAT 

retrieved values agreed more with measured albedo values than MODIS did, likely due to 

the finer spatial resolution of LANDSAT.  



36 
 

 

The instrument was flown onboard an unmanned aircraft system to introduce a novel 

technique for taking airborne albedo measurements. We demonstrate that it is possible to 

accurately measure albedo at low altitudes using an unmanned aircraft system. Slight 

increases in albedo with decrease in height AGL indicate the need for possibly applying 

an atmospheric correction to measurements even when flown a few hundred feet above 

the surface, and for interpretation of the effective field of view of the instrument. Use of 

UAS provides for obtaining albedo measurements over a large spatial area at a much 

lower cost compared to using a high-altitude plane without compromising accuracy of 

results.   

 

Future work could consist of developing the instrument for radiance measurements as 

well as for Bidirectional Reflectance Distribution Function (BRDF) measurements.  

Efforts to increase the wavelength range of the instrument would provide more thorough 

albedo measurements. Additional measurements over the entire Black Rock Desert are 

needed for a more comprehensive data set for comparison to satellite retrievals, as well as 

expanding the study to other areas known to have a high surface reflectance in the 

Western U.S. Additional comparison to other airborne platforms, such as manned aircraft 

for measuring surface reflectance, could also be explored. Analysis of seasonal variations 

in albedo over the Black Rock Desert could be useful for improving satellite retrievals of 

AOD and for general climate studies. Incorporating ground-based sun photometer 

measurements collocated with albedo measurements would provide additional 

comparison to assess satellite retrievals. Overall, the instrument has potential to be 
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transformed into a stationary device and could be designed to be mounted onto a tower 

with a more weather-proof case and a long-term power supply. Open sourcing the 

instrument design and software including the circuit board design, the 3D printed box, 

and the code used to operate the device is underway. 
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Appendix 1 
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Figure A1: Albedometer circuit board schematic for measuring device (top) and handheld ground 

control until (bottom). 

 

Appendix 2: Arduino code used to run both parts of the instrument is uploaded to the Teensy 3.2 

and 3.6 microcontrollers.  

 

/*  Albedometer,  Teensy  3.6  */ 

/*  UAV  VERSION  with  calculated  dark  current     */ 

 

 

/*  Push  button 

take  1  measurement 

push  again  to  take  another 

Also  includes  printing  of  K,  High  gain  setting,  teensy  avg  32,  set integration  time  of      100ms, 

and  temperature  modeled  dark  current,  and  USES  the  new  transfer  fcn  for 

the  Auto  Gain  off  setting. 

*/ 

 

 

//Libraries 

#include  <TinyGPS.h>                          /*  For  the  GPS            */ 

#include  <Adafruit_Sensor.h> 
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#include  <Adafruit_BME280.h>       /*  For  Temp/Pressure/Humidity  Sensor  */ 

#include  <Adafruit_MLX90614.h>  /*  For  IR  Sensor  */ 

#include  <Adafruit_VC0706.h>       /*  For  Camera  */ 

#include  <Adafruit_BNO055.h>       /*  For  Absolute  Orient  -  Level  Sensor  */ 

#include  <SPI.h> 

#include  <SD.h> 

#include  <Wire.h> 

#include  <TimeLib.h> 

#include  <utility/imumaths.h> 

 

 

//Function  Calls void  sendByte(); 

void  getAmbientTemp(); void  getObjectTemp(); void  getTemp(); 

void  getHumidity(); void  getPressure(); void  getAltitude(); void  getGPS(); 

void  saveData(); 

void  takePicture(); 

void  gpsdump(TinyGPS  &gps); 

 

 

//Set  Up  GPS TinyGPS  gps; 

#define  HWSERIALgps  Serial4          /*  Serial  port  used  for  the  NMEA  GPS       */ 

 

 

//Set  Up  Camera 

#define  HW  Serial3 

File  myFile;          //Create  file  object 

#define  chipSelect     BUILTIN_SDCARD          //  Assign  memory  card  pin  

Adafruit_VC0706  cam  =  Adafruit_VC0706(&HW); 

 

 

//Initialize  I2C Adafruit_BME280  bme; 

 

//Set  Up  Level,  Absolute  Orient 

#define  BNO055_SAMPLERATE_DELAY_MS  (100) Adafruit_BNO055  bno  =  

Adafruit_BNO055(55); char  tempArray[9]  =  {0}; 

char  roll[9]  =  {0}; char  pitch[9]  =  {0}; float  rollSpec1; float  pitchSpec1; 

 

//  Leveling  data 

float  RollBeforeSpec1UP; float  RollAfterSpec1UP; float  RollBeforeSpec2DOWN; float  

RollAfterSpec2DOWN; float  PitchBeforeSpec1UP; float  PitchAfterSpec1UP; float  

PitchBeforeSpec2DOWN; float  PitchAfterSpec2DOWN; 

 

 

 

//IR  Sensor 

Adafruit_MLX90614  mlx  =  Adafruit_MLX90614(); 

 

 

//Declarations 

float  pressure;                      //hPa float  ambientTemp;              //C* float  objectTemp;                 //C* float  

temp;                               //C* float  alt;                                  //m float  humid;                             //% 

 

//Sets  Sea  Level  Pressure 

#define  SEALEVELPRESSURE_HPA  (1013.25) 
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//Set  up  Spectrometers 

#define  SPEC_GAIN                   2       //  Pin  2  on  Teensy,  recognized  as  an  int. 

#define  SPEC_ST                        21     //  Could  also  be  pin  A7  instead.  21 

 

 

#define  SPEC_CLK1                   22     //  Could  also  be  pin  A8  instead.  22 

#define  SPEC_VIDEO1              23     //  Could  also  be  pin  A9  instead.  23 

#define  SPEC_CLK2                   35     //  Could  also  be  pin  A16  instead.  35  

#define  SPEC_VIDEO2              36     //  Could  also  be  pin  A17  instead.  36 

#define  SPEC_CHANNELS          256 float  albedo[SPEC_CHANNELS]; 

float  AlbedoUncertainty[SPEC_CHANNELS]; 

float  Spectra_Added[SPEC_CHANNELS]; 

/*New  Transfer  Function  */ 

float  Transfer_function[]  =  {0.954923333,  0.937852222,0.913888889,  0. 

912672222,  0.898741111,  0.894436667,  0.903385556, 

0.872847778,  0.858934444,  0.862938889,  0.829883333,  0.831866667,  0.822824444, 

0.802516667,  0.791152222,  0.761364444, 

0.764121111,  0.768255556,  0.764497778,  0.750393333,  0.720847778,  0.692708889, 

0.70551,  0.683398889,  0.682781111,  0.700182222, 

0.699522222,  0.713965556,  0.720002222,  0.70739,  0.700038889,  0.713603333,  0. 

730401111,  0.733724444,  0.72549,  0.719953333, 

0.694745556,  0.701234444,  0.707104444,  0.705844444,  0.698347778,  0.687364444, 

0.681735556,  0.668065556,  0.660224444, 

0.647616667,  0.660777778,  0.676687778,  0.693,  0.706662222,  0.711295556,  0. 

707105556,  0.710726667,  0.716373333,  0.711425556, 

0.700721111,  0.696773333,  0.687167778,  0.675865556,  0.676202222,  0.678375556, 

0.675817778,  0.676655556,  0.683166667, 

0.683127778,  0.691454444,  0.700194444,  0.701926667,  0.701757778,  0.69476,  0. 

691638889,  0.688636667,  0.691371111,  0.691084444, 

0.696582222,  0.691938889,  0.685112222,  0.677226667,  0.676144444,  0.674444444, 

0.677757778,  0.678672222,  0.681453333, 

0.674698889,  0.672387778,  0.675157778,  0.680414444,  0.686135556,  0.689041111, 

0.692237778,  0.690282222,  0.684472222, 

0.680803333,  0.677956667,  0.673438889,  0.669104444,  0.672331111,  0.67088,  0. 

669056667,  0.671634444,  0.671347778, 

0.670944444,  0.670657778,  0.668023333,  0.667627778,  0.667168889,  0.667353333, 

0.666344444,  0.666994444,  0.666038889, 

0.66539,  0.665121111,  0.670146667,  0.670466667,  0.667706667,  0.669128889,  0. 

66865,  0.665842222,  0.663966667,  0.660752222, 

0.661375556,  0.662138889,  0.660935556,  0.662338889,  0.663663333,  0.662363333, 

0.662248889,  0.661492222,  0.65838,  0.654621111, 

0.652583333,  0.649706667,  0.648165556,  0.64569,  0.643672222,  0.643812222,  0. 

642907778,  0.640745556,  0.640752222, 

0.639022222,  0.639,  0.638508889,  0.636614444,  0.636237778,  0.633847778,  0. 

636166667,  0.632191111,  0.632194444,  0.631566667, 

0.628933333,  0.629292222,  0.632225556,  0.630586667,  0.627615556,  0.629836667, 

0.630588889,  0.630912222,  0.632557778, 

0.63323,  0.632095556,  0.631777778,  0.627152222,  0.627358889,  0.622523333,  0. 

61973,  0.619978889,  0.620083333,  0.619374444, 

0.617984444,  0.617403333,  0.616094444,  0.611122222,  0.608258889,  0.604852222, 

0.602013333,  0.605594444,  0.60917,  0.612921111,  

0.617433333,  0.617485556,  0.617442222,  0.619876667,  0.618827778,  0.616728889, 
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0.616822222,  0.612081111,  0.608291111, 

0.602998889,  0.595821111,  0.593583333,  0.590915556,  0.596264444,  0.60118,  0. 

603705556,  0.607088889,  0.611355556,  0.61588, 

0.615461111,  0.609636667,  0.608892222,  0.604813333,  0.604051111,  0.60208,  0. 

599631111,  0.599982222,  0.599966667, 

0.603222222,  0.602982222,  0.604894444,  0.60307,  0.599796667,  0.595015556,  0. 

587808889,  0.580437778,  0.571736667,  0.560137778, 

0.55003,  0.544388889,  0.54208,  0.550808889,  0.562103333,  0.585604444,  0. 

603884444,  0.622484444,  0.63257,  0.633951111, 

0.627596667,  0.616226667,  0.602278889,  0.595341111,  0.584896667,  0.578542222, 

0.574517778,  0.570485556,  0.570013333, 

0.572608889,  0.572247778,  0.573077778,  0.575721111,  0.577791111,  0.578355556, 

0.582221111,  0.578144444,  0.580181111, 

0.5731,  0.570548889,  0.570327778,  0.566117778,  0.562016667,  0.55669,  0. 

559457778,  0.555164444,  0.556283333,  0.557306667, 

0.555628889,  0.556217778}; 

 

 

float  spec1DataUp[SPEC_CHANNELS]; 

float  spec2DataDown[SPEC_CHANNELS]; 

 

 

float  wavelength1[SPEC_CHANNELS]; 

float  wavelength2[SPEC_CHANNELS]; 

 

 

float  darkData1[SPEC_CHANNELS]; float  darkData2[SPEC_CHANNELS]; float  Dark1_1; 

float  Dark2_2; 

 

 

float  kk1  =  0; 

float  kk2  =  0; 

 

 

uint16_t  intTimeSpec1  =  100; 

uint16_t  intTimeSpec2  =  100; 

uint16_t  integrationTime1_1  =  100;  //  Spec  1,  UP 

uint16_t  integrationTime2_2  =  100;  //  Spec  2,  DOWN 

 

 

uint16_t  Dark1  =  950;     //  For  Spectrometer  C12666MA 

uint16_t  Dark2  =  950;     //  For  Spectrometer  C12666MA 

 

 

int  darkCurrentState  =  0; 

char  darkCurrentCom[5]  =  {0}; 

 

 

int  dataState  =  0; 

char  dataCom  [5]  =  {0};  

int  buttonState  =  0; 

char  buttonCom[5]  =  {0}; 
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//  Bools 

bool  AutoGain  =  false; boolean  newData  =  false; boolean  isLevel  =  false; 

 

/*****************GPS  Constants********************/ float  gpslat  =  -99.99                        ;  /*  

decimal  degrees  */ float  gpslon  =  -99.99                        ;  /*  decimal  degrees  */ float  gpsalt  =  -99.99                        

;  /*  meters  */ 

float  gpsspeed  =  -99.99                   ;  /*  kilometers  /  hour  */ 

float  gpscourse  =  -99.99                 ;  /*  degrees  */ 

int       gpsyear  =  -99                             ;  /*  e.g.  2016  */ 

int       gpsmon  =  99                                  ;  /*  1  thru  12  UTC  */ int       gpsday  =  99                                  

;  /*  1  thru  31  UTC  */ int       gpshour  =  99                               ;  /*  0  thru  59  UTC  */ int       gpsmin  

=  99                                  ;  /*  0  thru  59  UTC  */ int       gpssec  =  99                                  ;  /*  0  thru  

59  UTC  */ 

 

//  Saving  to  SD 

char  filename[]  =  "00000000.txt";  //  Data 

 

 

void  setup()  { 

Serial.println("Made  it  in  set  up"); HW.begin(9600);                        //camera 

//Open  Serial  to  Teensy Serial.begin(9600); Serial5.begin(9600);              //Radio 

HWSERIALgps.begin(9600);     //  GPS 

//bool  status; bme.begin(); bno.begin(); mlx.begin(); 

setSyncProvider(getTeensy3Time); 

 

 

/*****Set  up  the  Teensy  analog  to  digital  conversion******/ analogReadResolution(13);  //  Do  13  

bit  analog  read  resolution  on  the  Teensy. analogReadAveraging(32);     //  Do  1  measurements  and  

average  them  for  every 

analog  input  measurement. 

 

 

//pinMode(SPEC_EOS,  INPUT); pinMode(SPEC_GAIN,  OUTPUT); pinMode(SPEC_ST,  OUTPUT); 

pinMode(SPEC_CLK1,  OUTPUT);  

pinMode(SPEC_CLK2,  OUTPUT); 

//pinMode(SPEC_CLK3,  OUTPUT); 

 

 

digitalWrite(SPEC_ST,  HIGH); digitalWrite(SPEC_CLK1,  HIGH); digitalWrite(SPEC_CLK2,  HIGH); 

//digitalWrite(SPEC_CLK3,  HIGH); 

digitalWrite(SPEC_GAIN,  LOW);  //set  low  for  HIGH  Gain  set  high  for  LOW  Gain 

 

 

if  (!SD.begin(chipSelect))  { Serial.println("Card  failed,  or  not  present"); 

//  don't  do  anything  more: 

return; 

} 

 

 

//Sets  Image  Size 

//cam.setImageSize(VC0706_640x480);                   //  biggest cam.setImageSize(VC0706_320x240);                   

//  medium 

//cam.setImageSize(VC0706_160x120);                        //  small 

//uint8_t  imgsize  =  cam.getImageSize(); 
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//Wavelength  calibration readWavelength(1); readWavelength(2); 

 

}  //  End  of  Set  up void  loop()  { 

Serial.println("Made  it  in  loop"); 

if  (Serial.available())  { 

time_t  t  =  processSyncMessage(); 

if  (t  !=  0)  { 

Teensy3Clock.set(t);  //  set  the  RTC 

setTime(t); 

} 

}     //  End  of  Time  processSync 

 

 

do{ 

int  i  =  0; 

//delay(2000); 

//Reads  in  a  button  push  over  radio  as  an  array  and  outputs  as  an  int if  (Serial5.available()  >  0  

&&  newData  ==  false)  { 

delay(100);  //allows  all  serial  sent  to  be  received  together while  (Serial5.available()  &&  i  <  5)  { 

Serial.println("Data  is  writing");  

buttonCom[i++]  =  Serial5.read(); 

} 

buttonCom[i++]  =  '\0'; newData  =  true; Serial.println(buttonCom); 

} 

if  (newData  ==  true)  { buttonState  =  atoi(buttonCom); Serial.println(buttonState); buttonState  =  

HIGH; 

isLevel  =  false; 

} 

}  while  (buttonState  ==  LOW); 

 

 

while  (buttonState  ==  HIGH)  //  Giant  while  button  is  pushed,  begin  taking data 

{ 

//  Send  Status  Spec  1  UP 

char  StatusSpec11[10]  =  "z111&"; Serial5.write(StatusSpec11); 

 

//  Get  and  Store  Level sensors_event_t  spec2; bno.getEvent(&spec2); 

RollBeforeSpec1UP  =     (float)spec2.orientation.y; PitchBeforeSpec1UP  =  (float)spec2.orientation.z; 

 

readSpectrometer(1,  1);     //  Spectrometer  1,  UP  (1) 

 

 

//  get  and  store  level sensors_event_t  spec3; bno.getEvent(&spec3); 

RollAfterSpec1UP  =     (float)spec3.orientation.y; 

PitchAfterSpec1UP  =  (float)spec3.orientation.z; 

 

 

//  Send  Status  Spec  2  DOWN 

char  StatusSpec22[20]  =  "z221&"; Serial5.write(StatusSpec22); 

 

//  get  and  store  level sensors_event_t  spec4; bno.getEvent(&spec4); 



50 
 

RollBeforeSpec2DOWN  =     (float)spec4.orientation.y; PitchBeforeSpec2DOWN  =  

(float)spec4.orientation.z; 

 

readSpectrometer(2,  2);       //  Spectrometer  2,  DOWN  (2)  

 

//  get  and  store  level sensors_event_t  spec5; bno.getEvent(&spec5); 

RollAfterSpec2DOWN  =     (float)spec5.orientation.y; PitchAfterSpec2DOWN  =  

(float)spec5.orientation.z; 

 

//  Get  everything  else getAmbientTemp(); getObjectTemp(); getTemp(); getHumidity(); getPressure(); 

getAltitude(); getGPS(); 

//  Send  Status:  Saving  Photo char  StatusPhoto[20]  =  "z60&"; Serial5.write(StatusPhoto); takePicture(); 

delay(100); 

 

 

//  Send  Status:  Saving  Raw char  StatusRaw[20]  =  "z80&"; Serial5.write(StatusRaw); 

 

/*  Save  all  of  the  raw  data:  wavelength,  darks,  4  raw  spectras  */ 

saveRAWSpecData(wavelength1,  spec1DataUp,  spec2DataDown, integrationTime1_1,  

integrationTime2_2); 

 

/*  Do  all  of  the  calculations  */ 

//  Send  Status:  Calculating  Albedo char  StatusAlbedo[20]  =  "z90&"; Serial5.write(StatusAlbedo); 

 

/*  Subtract  the  dark  current  */ 

Dark1_1  =  0.010593*pow(temp,2)  +  0.062132*temp  +  719.9529; Dark2_2  =  0.010715*pow(temp,2)  

+  0.062741*temp  +  727.0078; for(int  i=0;  i  <  SPEC_CHANNELS;  i++){ 

spec1DataUp[i]  -=  Dark1_1; 

spec2DataDown[i]  -=  Dark2_2; 

//darkData1[i]  =  Dark1_1;  //  Added  to  print  out,  not  necessary 

//darkData2[i]  =  Dark2_2;  //  Added  to  print  out,  not  necessary 

}  //  End  of  Subtract  Dark 

//Serial.println(Dark1_1); 

//Serial.println(Dark2_2);  

/*  Uncertainty  calculation  PT.1  */ 

for(int  i=0;  i  <  SPEC_CHANNELS;  i++){ 

Spectra_Added[i]  =  (0.5)*  sqrt(1.0/abs(spec1DataUp[i])  +  1. 

0/abs(spec2DataDown[i])); 

} 

 

 

/*  Divide  by  the  integration  time  */ 

divideIntTime(1,spec1DataUp,  integrationTime1_1,  1);     //  Spec  #,  data, integration  time,  1  for  UP 

divideIntTime(2,spec2DataDown,  integrationTime2_2,  2);  //  Spec  #,  data, integration  time,  2  for  

DOWN 

 

/*  Transfer  Function  calculation  H()  */ 

for(int  i=0;  i  <  SPEC_CHANNELS;  i++){ 

spec1DataUp[i]  =  Transfer_function[i]*spec1DataUp[i]; 

} 

 

 

/*  Albedo  calculation  */ 
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spectraRatio(1,  spec1DataUp,  spec2DataDown);  //  Spec  ratio  (1  or  2), Spec  1  UP  minus  dark,  Spec  

2  down  minus  dark 

 

/*  Uncertainty  calculation  PT.2  */ for(int  i=0;  i  <  SPEC_CHANNELS;  i++){ AlbedoUncertainty[i]  =  

Spectra_Added[i]  *  albedo[i]; 

} 

 

 

/*  Save  Data  */ 

saveData(); 

 

 

/**  Format  and  send  Albedo  **/ 

float  PeakSpec  =  0; 

float  MinSpec  =  1000000; 

char  yPixel[84]; 

char  Pixel[9]; 

float  constrainedSpectra[SPEC_CHANNELS]; 

float  OrigPeakSpec  =  0; 

char  Peak[9]={0}; 

 

 

for  (int  j  =  0;  j  <  SPEC_CHANNELS;  j++)  {          //  Finds  peak  value  in original  Albedo 

if  (albedo[j]  >  OrigPeakSpec)  { 

OrigPeakSpec  =  albedo[j]; 

} 

} 

//  Send  over  the  peak  of  albedo  to  display  on  screen sprintf(Peak,  "q%02.02f&",  OrigPeakSpec);  

Serial5.write(Peak); 

 

 

for  (int  j  =  0;  j  <  84;  j++)  {          //  Finds  peak  value  and  minimum  value in  constrained  spectra 

constrainedSpectra[j]  =  ((albedo[3*j]  +  albedo[3*j+1]  + 

albedo[3*j+2])/3);     //  Averages  every  3  values  in  array if  (constrainedSpectra[j]  >  PeakSpec)  { 

PeakSpec  =  constrainedSpectra[j]; 

} 

if  (constrainedSpectra[j]  <  MinSpec){ MinSpec  =  constrainedSpectra[j]; 

} 

} 

 

 

float  den  =  PeakSpec  -  MinSpec; 

for  (int  j  =  0;  j  <  84;  j++)  { 

yPixel[j]  =  40-(40  *  (PeakSpec  -  constrainedSpectra[j])/  den); 

sprintf(Pixel,  "a%0d&",  yPixel[j]); Serial5.write(Pixel); Serial.println(Pixel); 

delay(10); 

} 

 

 

delay(100); buttonState  =  LOW; newData  =  false; 

Serial.println(buttonState); 

 

 

}  //  End  button  State  High buttonState  =  LOW; 
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}     //  End  of  Main  Loop 

 

 

void  readWavelength(int  SpecNum)  { 

if  (SpecNum  ==  1)  { 

float  A_0  =  3.157284930e2; float  B_1  =  2.382758890; float  B_2  =  -4.532653713e-4; float  B_3  =  -

9.592362306e-6; float  B_4  =  2.283177122e-8; 

float  B_5  =  -2.319360095e-11; 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

wavelength1[i]  =  A_0  +  B_1  *  i  +  B_2  *  pow(i,  2)  +  B_3  *  pow(i,  3)  + B_4  *  pow(i,  4)  +  

B_5  *  pow(i,  5); 

} 

} 

else  if  (SpecNum  ==  2)  {  

float  A_0  =  3.187695698e2; float  B_1  =  2.384544110; float  B_2  =  -6.291373514e-4; float  B_3  =  -

7.755157198e-6; float  B_4  =  1.487105328e-8; 

float  B_5  =  -1.104337883e-11; 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

wavelength2[i]  =  A_0  +  B_1  *  i  +  B_2  *  pow(i,  2)  +  B_3  *  pow(i,  3)  + B_4  *  pow(i,  4)  +  

B_5  *  pow(i,  5); 

} 

} 

}     //  End  of  Read  Wavelength 

 

 

/*//  Calculates  the  fixed  dark  value  based  on  the  integration  time  of  each spectra 

float  Fixed_Dark(float  intTime){ 

float  temp  =  725.0+.08125*((float)intTime-100.0);     //  These  numbers  were obtained  through  testing  

the  dark  current,  excel 

return  temp; 

}  //  End  of  Fixed  Dark 

*/ 

void  divideIntTime(int  SpecNum,  float  data[SPEC_CHANNELS],  uint16_t  intTime, int  x){ 

 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

data[i]  =  (data[i]/(float)intTime); 

} 

 

 

//  Return  data  to  the  correct  array if  (SpecNum  ==  1  &&  x  ==  1)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec1DataUp[i]  =  data[i]; 

} 

} 

if  (SpecNum  ==  2  &&  x  ==  2)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec2DataDown[i]  =  data[i]; 

} 

} 

}  //  End  of  divide  by  intTime 

 

 

void  spectraRatio(int  sR,  float  data1[SPEC_CHANNELS],  float data2[SPEC_CHANNELS]){ 

if  (sR  ==  1)  { 
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for(int  i  =  0;  i  <  SPEC_CHANNELS;  i++){ 

albedo[i]  =  (data2[i]/data1[i]);  

} 

} 

}  //  End  of  spectraRatio 

 

 

void  readSpectrometer(int  SpecNum,  int  x)  //  Spectrometer  (1  or  2),  spectra 

(first  or  second) 

{ 

uint16_t  intTimeNew;                 //  Initialize  integration  time  variable,  for 

Step  3  and  auto  gain. 

uint16_t  PeakSpec  =  0;            //  Initialize  Spectral  peak  variable  to determine  integration  time  

variable. 

uint16_t  Dark  =  0;                      //  Initialize  dark  variable,  changes  based  on 

spectrometer  being  used. 

bool  PeakCheck  =  false;          //  Initialize  the  while  loop  to  find  spectra peak  value. 

//int  delay_time  =  35;            //  delay  per  half  clock  (in  microseconds).     This ultimately  controls  the  

integration  time. 

int  delay_time  =  1;                   //  delay  per  half  clock  (in  microseconds).     This 

ultimately  controls  the  integration  time. 

int  read_time  =  35;                   //  Amount  of  time  that  the  analogRead() 

procedure  takes  (in  microseconds)  (different  micros  will  have  different  times) 

int  accumulateMode  =  false; float  data[SPEC_CHANNELS]; int  idx  =  0; 

int  k  =  0; 

int  SPEC_CLK  =  0; 

int  SPEC_VIDEO  =  0; 

 

 

//  Determine  which  spectrometer  is  in  use  to  set  variables  to  match: 

 

 

if  (SpecNum  ==  1)  { SPEC_CLK  =  SPEC_CLK1; SPEC_VIDEO  =  SPEC_VIDEO1; 

Dark  =  Dark1;     //  Dark  1  is  background  and  comes  from  global  variables. 

intTimeNew  =  intTimeSpec1; 

} 

else  if  (SpecNum  ==  2)  { SPEC_CLK  =  SPEC_CLK2; SPEC_VIDEO  =  SPEC_VIDEO2; 

Dark  =  Dark2;  //     Dark  2  is  background  and  comes  from  global  variables. 

intTimeNew  =  intTimeSpec2; 

} 

 

 

while  ((PeakCheck  ==  false)  &&  (k  <  5))  { 

k++;  

//  Step  1:  start  leading  clock  pulses 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { digitalWrite(SPEC_CLK,  LOW); 

delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); 

delayMicroseconds(delay_time); 

} 

 

 

//  Step  2:  Send  start  pulse  to  signal  start  of  integration/light collection 

digitalWrite(SPEC_CLK,  LOW); delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); 

digitalWrite(SPEC_ST,  LOW); delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  LOW); 
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delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); digitalWrite(SPEC_ST,  HIGH); 

delayMicroseconds(delay_time); 

 

//  Step  3:  Integration  time  --  sample  for  a  period  of  time  determined  by the  intTime  parameter 

int  blockTime  =  delay_time  *  8; 

long  int  numIntegrationBlocks  =  ((long)intTimeNew  *  (long)1000)  / (long)blockTime; 

for  (int  i  =  0;  i  <  numIntegrationBlocks;  i++)  { 

//  Four  clocks  per  pixel 

//  First  block  of  2  clocks  --  measurement digitalWrite(SPEC_CLK,  LOW); 

delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); delayMicroseconds(delay_time); 

digitalWrite(SPEC_CLK1,  LOW); delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); 

delayMicroseconds(delay_time); 

 

digitalWrite(SPEC_CLK,  LOW); delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); 

delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  LOW); delayMicroseconds(delay_time); 

digitalWrite(SPEC_CLK,  HIGH); delayMicroseconds(delay_time);  

} 

 

 

 

//  Step  4:  Send  start  pulse  to  signal  end  of  integration/light  collection digitalWrite(SPEC_CLK,  

LOW); 

delayMicroseconds(delay_time); 

digitalWrite(SPEC_CLK,  HIGH); digitalWrite(SPEC_ST,  LOW); delayMicroseconds(delay_time); 

digitalWrite(SPEC_CLK,  LOW); delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); 

digitalWrite(SPEC_ST,  HIGH); delayMicroseconds(delay_time); 

 

//  Step  5:  Read  Data  2  (this  is  the  actual  read,  since  the  spectrometer has  now  sampled  data) 

idx  =  0; 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

//  Four  clocks  per  pixel 

//  First  block  of  2  clocks  --  measurement digitalWrite(SPEC_CLK,  LOW); 

delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); delayMicroseconds(delay_time); 

digitalWrite(SPEC_CLK,  LOW); 

 

//  Analog  value  is  valid  on  low  transition if  (accumulateMode  ==  false)  { 

//              unsigned  long  stTime  =  micros()  ; 

data[idx]  =  analogRead(SPEC_VIDEO); 

//              unsigned  long  eTime  =  micros()  ; 

//              unsigned  long  del=eTime-stTime; 

//              Serial.print("microsecs  for  read  ="); 

//              Serial.println(del)       ; 

 

 

}  else  { 

data[idx]  +=  analogRead(SPEC_VIDEO); 

} 

idx  +=  1; 

if  (delay_time  >  read_time)  delayMicroseconds(delay_time  - read_time);       //  Read  takes  about  

135uSec 

 

digitalWrite(SPEC_CLK,  HIGH); 

delayMicroseconds(delay_time);  
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//  Second  block  of  2  clocks  --  idle digitalWrite(SPEC_CLK,  LOW); delayMicroseconds(delay_time); 

digitalWrite(SPEC_CLK,  HIGH); delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  LOW); 

delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); delayMicroseconds(delay_time); 

} 

 

 

//  Step  6:  trailing  clock  pulses 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { digitalWrite(SPEC_CLK,  LOW); 

delayMicroseconds(delay_time); digitalWrite(SPEC_CLK,  HIGH); 

delayMicroseconds(delay_time); 

} 

//  Return  data  to  the  correct  array if  (SpecNum  ==  1  &&  x  ==  1)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec1DataUp[i]  =  data[i]; 

} 

} 

if  (SpecNum  ==  2  &&  x  ==  2)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec2DataDown[i]  =  data[i]; 

} 

} 

 

 

//  Auto  Gain 

 

 

if  (AutoGain  ==  false)  return;  //  When  Autogain  is  not  used,  just  return the  measured  spectra. 

 

PeakSpec  =  0; 

for  (int  j  =  0;  j  <  SPEC_CHANNELS;  j++)  {     //  Finds  the  peak  value  in  the spectra. 

if  (data[j]  >  PeakSpec)  { 

PeakSpec  =  data[j]; 

} 

} 

//if  (PeakSpec  >=  5000  &&  PeakSpec  <=  6500)  {  //  if  Spectral  peak  is  ok, then  don't  change  the  

integration  time  

if  (PeakSpec  >=  3000  &&  PeakSpec  <=  3470)  {  //  Changed  for  low  gain,  to  be below  saturation,  

and  reduced  range  with  hope  for  more  consistent  albedos 

if  (SpecNum  ==  1  &&  x  ==  1)  { 

integrationTime1_1  =  intTimeNew; 

kk1  =  k; 

//intTimeSpec1  =  intTimeNew; 

} 

if  (SpecNum  ==  2  &&  x  ==  2)  { integrationTime2_2  =  intTimeNew; kk2  =  k; 

//intTimeSpec2  =  intTimeNew; 

} 

 

 

if  (SpecNum  ==  1  &&  x  ==  1)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec1DataUp[i]  =  data[i]; 

} 

} 

if  (SpecNum  ==  2  &&  x  ==  2)  { 
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for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec2DataDown[i]  =  data[i]; 

} 

} 

PeakCheck  =  true;                                         //  This  will  exit  the  While  loop 

with  good  data. 

} 

else  { 

if  (k  ==  5){  //  Unsuccessful  in  finding  a  new  integration  time.     Reset to  the  last  value. 

if  (SpecNum  ==  1  &&  x  ==  1)  { 

integrationTime1_1  =  intTimeNew; 

//intTimeSpec1  =  intTimeNew; 

} 

if  (SpecNum  ==  2  &&  x  ==  2)  { 

integrationTime2_2  =  intTimeNew; 

//intTimeSpec2  =  intTimeNew; 

} 

if  (SpecNum  ==  1  &&  x  ==  1)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec1DataUp[i]  =  data[i]; 

} 

} 

if  (SpecNum  ==  2  &&  x  ==  2)  { 

for  (int  i  =  0;  i  <  SPEC_CHANNELS;  i++)  { 

spec2DataDown[i]  =  data[i]; 

}  

} 

}  //  End  k  ==  5 

float  intTimeNewF  =  (float)intTimeNew  *  (float)(3200  -  Dark)  / (float)(PeakSpec  -  Dark  +  0.01);  //  

if  Spectral  peak  is  not  ok,  then  change integration  time  based  on  equation 

intTimeNew  =  (uint16_t)abs(intTimeNewF);     //  Protected  against  zero  in 

denomenator 

intTimeNew  =  constrain(intTimeNew,  1,  3000); 

if  (PeakSpec  >=  3475)  intTimeNew  =  2;  //  Setting  Integration  time  when massive  overload  might  

have  happened. 

} 

 

 

}       //  End  while  loop  to  check  Auto  Gain 

 

 

}       //  End  of  readSpectrometer() 

 

 

/********  Everything  else  subroutines  ********/ 

 

 

void  sendByte() 

{ 

dataState  =  HIGH; itoa(dataState,  dataCom,  10); Serial5.write(dataCom); Serial.println(dataCom); 

delay(100); 

dataState  =  LOW; 

} 
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void  saveRAWSpecData(float  wavelength[SPEC_CHANNELS],  float Spec1_1[SPEC_CHANNELS],  

float  Spec2_2[SPEC_CHANNELS],  uint16_t integrationTime1_1,  uint16_t  integrationTime2_2){ 

File  myFile; 

myFile  =  SD.open("RawData.txt",  FILE_WRITE); 

if(myFile) 

{ 

myFile.println("\n"); myFile.print("RTC  Date  &  Time:"); if(month()  <  10)  myFile.print('0'); 

myFile.print(month()); myFile.print("/"); 

if(day()  <  10)  myFile.print('0'); myFile.print(day()); myFile.print("/"); myFile.print(year()); 

myFile.print("     "); 

if(hour()  <  10)  myFile.print('0');  

myFile.print(hour()); 

myFile.print(":"); 

if(minute()  <  10)  myFile.print('0'); myFile.print(minute()); myFile.print(":"); 

if(second()  <  10)  myFile.print('0'); 

myFile.println(second()); myFile.print("Integration  Time  for  Spec  1  UP:  "); 

myFile.println(integrationTime1_1); myFile.print("Integration  Time  for  Spec  2  DOWN:  "); 

myFile.println(integrationTime2_2); myFile.println("Wavelength,  Spectra1_Up,  Spectra2_Down"); for(int  

i=0;  i<SPEC_CHANNELS;  i++) 

{ 

myFile.print(wavelength[i]); myFile.print(","); myFile.print("            "); myFile.print(Spec1_1[i],5); 

myFile.print(","); myFile.print("            "); myFile.print(Spec2_2[i],5); myFile.println("\n"); 

} 

} 

myFile.close(); 

} 

 

 

void  getAmbientTemp() 

{ 

ambientTemp  =  mlx.readAmbientTempC(); 

} 

void  getObjectTemp() 

{ 

objectTemp  =  mlx.readObjectTempC(); 

} 

void  getTemp() 

{ 

bme.takeForcedMeasurement(); 

temp  =  bme.readTemperature(); 

} 

void  getHumidity() 

{ 

bme.takeForcedMeasurement(); 

humid  =  bme.readHumidity(); 

} 

void  getPressure()  

{ 

bme.takeForcedMeasurement(); 

pressure  =  (bme.readPressure()  /  100.0F); 

} 

void  getAltitude() 

{ 
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bme.takeForcedMeasurement(); 

alt  =  bme.readAltitude(SEALEVELPRESSURE_HPA); 

} 

 

 

void  gpsdump(TinyGPS  &gps) 

{ 

long  lat,  lon; 

float  flat,  flon; 

unsigned  long  age,  date,  time,  chars; 

int  year; 

byte  month,  day,  hour,  minute,  second,  hundredths; 

unsigned  short  sentences,  failed; gps.get_position(&lat,  &lon,  &age); gps.f_get_position(&flat,  &flon,  

&age); gps.get_datetime(&date,  &time,  &age); 

gps.crack_datetime(&year,  &month,  &day,  &hour,  &minute,  &second, 

&hundredths,  &age); 

 

 

gpslat  =  flat                                                                               ; gpslon  =  flon                                                                               

; gpsalt       =  gps.f_altitude()                                              ; gpsspeed  =  gps.f_speed_kmph()                                         

; gpscourse  =  gps.f_course()                                                ; gpsyear       =  year                                                                        

; gpsmon          =  static_cast<int>(month)                          ; gpsday          =  static_cast<int>(day)                               

; gpshour       =  static_cast<int>(hour)                             ; gpsmin          =  static_cast<int>(minute)                        

; 

gpssec          =  static_cast<int>(second)                        ; 

 

 

 

gps.stats(&chars,  &sentences,  &failed); 

} 

 

 

void  getGPS() 

{  

bool  newdata  =  false                               ; unsigned  long  startup  =  millis()  ; while  (millis()  -  startup  <  

1000L)  { 

if  (HWSERIALgps.available())  { char  c  =  HWSERIALgps.read(); if  (gps.encode(c))  { 

newdata  =  true          ; 

break                               ;  /*  Obtained  data,  bail  out  of  the  while  loop  */ 

} 

} 

 

 

} 

if  (newdata)  gpsdump(gps); 

/*Serial.print(gpslat,  5); Serial.print(","); Serial.print(gpslon,  5); Serial.print(","); Serial.print(gpsalt); 

Serial.print(","); Serial.print(gpsspeed); Serial.print(","); Serial.println(gpscourse); 

*/ 

} 

 

 

void  saveData() 

{ 

filename[0]  =  hour()/10  +  '0'; filename[1]  =  hour()%10  +  '0'; filename[2]  =  '-'; 
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filename[3]  =  minute()/10  +  '0'; filename[4]  =  minute()%10  +  '0'; filename[5]=  '-'; 

filename[6]  =  second()/10  +  '0'; 

filename[7]  =second()%10  +  '0'; 

 

 

myFile  =  SD.open(filename,  FILE_WRITE); 

if  (myFile) 

{ 

myFile.println("GPS_Date,GPS_Time,  Latitude,  Longitude,  Altitude, Course_Degrees"); 

myFile.print(gpsday); 

myFile.print("/"); myFile.print(gpsmon); myFile.print("/"); myFile.print(gpsyear);  

myFile.print(","); myFile.print(gpshour); myFile.print(":"); myFile.print(gpsmin); myFile.print(":"); 

myFile.print(gpssec); myFile.print(","); myFile.print(gpslat); myFile.print(","); myFile.print(gpslon); 

myFile.print(","); myFile.print(gpsalt); myFile.print(","); myFile.println(gpscourse); myFile.print("\0"); 

 

myFile.print("RTC  Date  &  Time:"); if(month()  <  10)  myFile.print('0'); myFile.print(month()); 

myFile.print("/"); 

if(day()  <  10)  myFile.print('0'); myFile.print(day()); myFile.print("/"); myFile.print(year()); 

myFile.print("     "); 

if(hour()  <  10)  myFile.print('0'); myFile.print(hour()); myFile.print(":"); 

if(minute()  <  10)  myFile.print('0'); myFile.print(minute()); myFile.print(":"); 

if(second()  <  10)  myFile.print('0'); myFile.println(second()); myFile.print("Temperature:  "); 

myFile.println(temp); myFile.print("Pressure:  "); myFile.println(pressure); myFile.print("Humidity:  "); 

myFile.println(humid); myFile.print("Altitude:  "); myFile.println(alt); myFile.print("Ambient  Temp:  "); 

myFile.println(ambientTemp); myFile.print("Object  Temp:  "); myFile.println(objectTemp); 

myFile.println("Roll  &  Pitch  (roll,  pitch):  ");  

myFile.print("Before  Spec1  UP:  "); myFile.print("("); myFile.print(RollBeforeSpec1UP); 

myFile.print(","); myFile.print(PitchBeforeSpec1UP); myFile.println(")"); myFile.print("After  Spec1  UP:  

"); myFile.print("("); myFile.print(RollAfterSpec1UP); myFile.print(","); 

myFile.print(PitchAfterSpec1UP); myFile.println(")"); myFile.print("Before  Spec2  DOWN:  "); 

myFile.print("("); myFile.print(RollBeforeSpec2DOWN); myFile.print(","); 

myFile.print(PitchBeforeSpec2DOWN); myFile.println(")"); myFile.print("After  Spec2  DOWN:  "); 

myFile.print("("); myFile.print(RollAfterSpec2DOWN); myFile.print(","); 

myFile.print(PitchAfterSpec2DOWN); myFile.println(")"); 

myFile.print("Dark  Spectrometer  1  (UP):  "); 

myFile.println(Dark1_1); 

myFile.print("Dark  Spectrometer  2  (DOWN):  "); 

myFile.println(Dark2_2); 

myFile.print("K  Spectrometer  1  (UP):  "); 

myFile.println(kk1); 

myFile.print("K  Spectrometer  2  (DOWN):  "); 

myFile.println(kk2); 

myFile.println(""); 

 

 

myFile.println("Wavelength,  Surface_Albedo,  Albedo_uncertainty, Spectra1_Up,  Spectra2_Down"); 

for(int  i  =  0;  i  <  SPEC_CHANNELS;  i++) 

{ 

myFile.print(wavelength1[i]); myFile.print(","); myFile.print("            "); myFile.print(albedo[i],5); 

myFile.print(","); myFile.print("          "); 

myFile.print(AlbedoUncertainty[i],  5); 

myFile.print(",");  

myFile.print("          "); myFile.print(spec1DataUp[i],5); myFile.print(","); myFile.print("          "); 

myFile.print(spec2DataDown[i],5); 
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myFile.println(""); 

} 

myFile.println("\n"); 

}  else  { Serial.println("Error!"); 

} 

myFile.close(); 

} 

 

 

void  takePicture() 

{ 

if  (cam.begin())  { Serial.println("Camera  Found:"); 

}  else  { 

Serial.println("No  camera  found?"); 

return; 

} 

 

 

//  delay(100); 

delay(3000); 

 

 

if  (!  cam.takePicture()) Serial.println("Failed  to  snap!"); 

else 

Serial.println("Picture  taken!"); 

 

 

char  imgfile[]  =  "00000000.JPG";     //  Camera for  (int  i  =  0;  i  <  1;  i++)  { 

imgfile[0]  =  hour()/10  +  '0'; imgfile[1]  =  hour()%10  +  '0'; imgfile[2]  =  '_'; 

imgfile[3]  =  minute()/10  +  '0'; imgfile[4]  =  minute()%10  +  '0'; imgfile[5]=  '_'; 

imgfile[6]  =  second()/10  +  '0'; 

imgfile[7]  =second()%10  +  '0'; 

if  (!  SD.exists(imgfile))  { 

break; 

} 

} 

myFile  =  SD.open(imgfile,  FILE_WRITE);  

uint16_t  jpglen  =  cam.frameLength(); 

 

 

while  (jpglen  >  0)  { 

uint8_t  *buffer; 

uint8_t  bytesToRead  =  min(64,  jpglen);  //  change  32  to  64  for  a  speedup but  may  not  work  with  

all  setups! 

buffer  =  cam.readPicture(bytesToRead); 

myFile.write(buffer,  bytesToRead); 

jpglen  -=  bytesToRead; 

} 

myFile.close(); 

} 

 

 

time_t  getTeensy3Time() 

{ 
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return  Teensy3Clock.get(); 

} 

 

 

unsigned  long  processSyncMessage()  { 

unsigned  long  pctime  =  0L; 

const  unsigned  long  DEFAULT_TIME  =  1357041600;  //  Jan  1  2013 

} 

 

// end Albedo_3.6_UAV 

 

 

 

// Ground control device code 

// Radio communication  

 

#include  <Adafruit_GFX.h>              /*  For  the  display  */ 

#include  <Adafruit_PCD8544.h>     /*  For  the  display  */ 

#include  <SPI.h>     /*  Serial  Communication  */ 

#include  <Wire.h>  /*  I2C  Communication  */ 

 

 

#define  SPEC_CHANNELS  256 

Adafruit_PCD8544  display  =  Adafruit_PCD8544(8,  6,  4,  3,  2);  //  For  the  LCD  display void  

recAlbedo(); 

void  recvWithStartEndMarkers(); 

bool  printAlbedo  =  false; 

 

 

const  int  buttonPin  =  10; 

int  buttonState  =  1; 

char  buttonCom[5]  =  {0}; 

char  darkCurrentCom[5]  =  {0}; 

int  darkCurrentState  =  0; 

 

 

//Temp  Arrays  for  receiving  data const  byte  numChars  =  32; 

char  receivedChars[numChars]; 

char  tempChars[numChars]; 

//char  ab[84]; 

char  measType  =  '0'; 

 

 

//Initilization  of  Parsed  data 

char  messageFromPC[numChars]  =  {0}; 

int  integerFromPC  =  0; char  dataCom[5]  =  {0}; int  dataState  =  0; uint16_t  xPixel[84]; uint16_t  

yPixel[84]; 

float  wavelength[SPEC_CHANNELS]; 

 

 

//float  rollDark  =  0.0; 

float  rollSpec1; float  pitchSpec1; float  albedo1; float  albedo2[72]; String  Status; float  OrigPeak; 
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boolean  newData  =  false; boolean  newByte  =  false; boolean  isLevel  =  false; boolean  GotPeak  =  

false; 

 

void  setup()  { 

 

 

pinMode(buttonPin,  INPUT); 

 

 

display.begin(); display.setContrast(60); display.setTextSize(1); display.setTextColor(BLACK);  

Serial.begin(9600); Serial1.begin(9600); 

 

}  //  End  Set  Up void  loop()  { 

display.clearDisplay();     //For  the  display display.setCursor(0,0);     //For  the  display 

display.println("Press  the\nbutton  \nto  begin  \nmeasurements"); display.display(); 

 

buttonState  =  digitalRead(buttonPin); 

while  (buttonState  ==  LOW) 

{ 

Serial.println("button  pressed"); itoa(buttonState,  buttonCom,  10); buttonState  =  LOW; 

Serial.println(buttonCom); Serial1.write(buttonCom); 

 

//Read  in  everything while(isLevel  ==  false){ 

measType  =  'z'; 

recvWithStartEndMarkers(); 

if  (newData  ==  true){ strcpy(tempChars,  receivedChars); float  NumberCode  =  atof(tempChars); 

 

if  (NumberCode  ==  45){ display.clearDisplay();     //For  the  display display.setTextSize(1); 

display.setCursor(12,20);     //For  the  display display.println("Dark  Taken"); display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  50){ display.clearDisplay();     //For  the  display display.setTextSize(1); 

display.setCursor(25,15);     //For  the  display display.println("Begin\n     Leveling..."); display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  60){ display.clearDisplay();     //For  the  display display.setTextSize(1); 

display.setCursor(25,15);     //For  the  display display.println("Saving\n       Photo..."); display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  70){ 

display.clearDisplay();     //For  the  display  

display.setTextSize(1); display.setCursor(8,20);     //For  the  display display.println("Flip  over..."); 

display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  80){ display.clearDisplay();     //For  the  display display.setTextSize(1); 

display.setCursor(12,15);     //For  the  display display.println("Saving  Raw\n          Data..."); 

display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  90){ display.clearDisplay();     //For  the  display display.setTextSize(1); 

display.setCursor(12,15);     //For  the  display display.println("Calculating\n          Albedo..."); 

display.display(); 

newData  =  false; 
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break; 

} 

if  (NumberCode  ==  111){ display.clearDisplay();     //For  the  display display.setCursor(0,0);     //For  

the  display display.setTextSize(1); display.println("Taking\nSpectrometer\nmeasurement"); 

display.setTextSize(2); 

display.setCursor(20,29);     //For  the  display display.print("1  UP"); 

display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  221){ display.clearDisplay();     //For  the  display display.setCursor(0,0);     //For  

the  display display.setTextSize(1); display.println("Taking\nSpectrometer\nmeasurement"); 

display.setTextSize(2); 

display.setCursor(8,29);     //For  the  display display.print("2  DOWN"); 

display.display(); 

newData  =  false; 

} 

if  (NumberCode  ==  121){ display.clearDisplay();     //For  the  display display.setCursor(0,0);     //For  

the  display display.setTextSize(1); display.println("Taking\nSpectrometer\nmeasurement"); 

display.setTextSize(2); 

display.setCursor(8,29);     //For  the  display display.print("1  DOWN"); 

display.display(); 

newData  =  false; 

}  

if  (NumberCode  ==  211){ display.clearDisplay();     //For  the  display display.setCursor(0,0);     //For  

the  display display.setTextSize(1); display.println("Taking\nSpectrometer\nmeasurement"); 

display.setTextSize(2); 

display.setCursor(20,29);     //For  the  display display.print("2  UP"); 

display.display(); 

newData  =  false; 

} 

} 

} 

while(GotPeak  ==  false){ measType  =  'q'; recvWithStartEndMarkers(); if  (newData  ==  true){ 

strcpy(tempChars,  receivedChars); OrigPeak  =  atof(tempChars); 

GotPeak  =  true; 

} 

} 

 

 

int  z  =  0; 

float  peak  =  0; 

while(z<72) 

{ 

measType  =  'a'; recvWithStartEndMarkers(); if  (newData  ==  true) 

{ 

//recvWithStartEndMarkers(); strcpy(tempChars,  receivedChars); albedo1  =  atof(tempChars); albedo2[z]  

=  albedo1; 

z++; 

//memset(tempChars,  0,  sizeof(tempChars)); 

//memset(receivedChars,  0,  sizeof(receivedChars)); 

delay(10); 

newData  =  false; 

} 

} 
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//Display  albedo 

display.clearDisplay();     //For  the  display display.setCursor(0,41);     //For  the  display 

display.setTextSize(1); display.setTextColor(BLACK); display.print("Peak="); 

display.println(OrigPeak);            //  Displays  Peak  value  on  screen 

for  (int  i  =  0;  i  <  72;  i++){ Serial.println(albedo2[i]); 

display.drawPixel(i,  albedo2[i],  BLACK);     //  draw  a  single  pixel 

} 

display.display(); 

delay(2500);  //  Hold  Albedo  plot  on  display  for  2.5  Seconds buttonState  =  HIGH;  

} 

}  //  End  Loop 

 

 

//Function  that  recieves  data  with  starting  marker  *  and  end  marker  & 

void  recvWithStartEndMarkers()  { 

static  boolean  recvInProgress  =  false; 

static  byte  ndx  =  0; 

char  startMarker  =  measType; 

char  endMarker  =  '&'; 

char  rc; 

 

 

while  (Serial1.available()  >  0  &&  newData  ==  false)  { 

rc  =  Serial1.read(); 

 

 

if  (recvInProgress  ==  true)  { 

if  (rc  !=  endMarker)  { receivedChars[ndx]  =  rc; ndx++; 

if  (ndx  >=  numChars)  { 

ndx  =  numChars  -  1; 

} 

} 

else  { 

receivedChars[ndx]  =  '\0';  //  terminate  the  string recvInProgress  =  false; 

ndx  =  0; 

newData  =  true; 

} 

} 

else  if  (rc  ==  startMarker)  { 

recvInProgress  =  true; 

} 

} 

} 

 

 

void  recByte() 

{ 

int  i  =  0; 

if(Serial1.available()  >0  &&  newByte  ==  false) 

{ 

while  (Serial1.available()  &&  i<5) 

{ 

dataCom[i++]  =  Serial1.read(); 

} 
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dataCom[i++]  =  '\0'; 

newByte  =  true; 

} 

if  (newByte  ==  true) 

{ 

dataState  =  atoi(dataCom); 

} 

} 

 

// End ground control device code 

 

 

 

Appendix 3 Albedo measurements at each altitude. 

 

Figure A2: Albedo measurements obtained from UAS on October 5th, 2017 in Nevada’s Black 

Rock Desert over road location. (a.) Measurements obtained 100 ft AGL. (b.) Measurements 

obtained 200 ft AGL. (c.) Measurements obtained 300 ft AGL. (d.) Measurements obtained 393 ft 

AGL.  
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Figure A3: Albedo measurements obtained from UAS on October 5th, 2017 in Nevada’s Black 

Rock Desert over nonroad location. (a.) Measurements obtained 100 ft AGL. (b.) Measurements 

obtained 200 ft AGL. (c.) Measurements obtained 300 ft AGL. (d.) Measurements obtained 393 ft 

AGL.  

 

 

Figure A4: MODIS (MOD/MYD09GQ) and MODIS 8-day best (MOD/MYD09Q1) band 1 (620-

670 nm) surface reflectance (250 m resolution) for Terra (a and b) and AQUA (c and d) 

comparison to measured values over road and nonroad locations. MODIS pixels directly over the 

measurement site are designated as “center” while immediately neighboring pixels are taken to be 

“above”, “below”, “left”, and “right” in relation to the center pixel.    
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Appendix 4 Ground instantaneous field of view (GIFOV). 

𝐷 ≈ 2ℎ tan (𝜃). (eq. A1) 

In equation A1, D is the ground field of view, h is the height above ground level, and 2θ is the 

angular field of view of the detector. 

 

 

Figure A5: Diagram of the detector field of view while flying. A change in height (h) above the 

ground level will affect the spatial area that the instrument senses at the surface (D).  


