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Lecture 14 

Light scattering and absorption by atmospheric particulates. Part 2: 

Scattering and absorption by spherical particles. 
 

Objectives: 

1. Maxwell equations. Wave equation. Dielectrical constants of a medium.  

2. Mie-Debye theory. 

3. Optical properties of an ensemble of spherical particles.  

 

Required Reading:  

L02: 5.2 

Additional/Advanced Reading:  
Bohren, G.F., and D.R. Huffmn, Absorption and scattering of light by small particles. John 

Wiley&Sons, 1983. 

 

Excellent web site on “The optics of a water drop: Mie scattering” 

http://philiplaven.com/index1.html 

 

 
1. Maxwell equations. Wave equation. Dielectrical constants of a 

medium.  

Maxwell equations connect the five basic quantities the electric vector, E
r

,  magnetic 

vector, H
r

,  magnetic induction, B
r

,  electric displacement, D
r

 ,  and electric current 

density, j
r
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πρ4=•∇ D
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0=•∇ B
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where c is a constant (wave velocity); and ρρρρ is the electric charge density. 
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To allow a unique determination of the electromagnetic field vectors, the Maxwell 

equations must be supplemented by relations which describe the behavior of substances 

under the influence of electromagnetic field. They are 

Ej
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                                                         ED
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ε=                                               [14.2] 
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µ=  

where  

σσσσ is called the specific conductivity; εεεε is called the dielectrical constant (or the 

permittivity), and µµµµ is called the magnetic permeability. 

 

Depending on the value of σ, σ, σ, σ, the substances are divided into: 

conductors: 0≠σ (i.e., σ σ σ σ is NOT negligibly small), (for instance, metals) 

dielectrics (or insulators): 0=σ (i.e., σ σ σ σ is negligibly small), (for instance, air 

 aerosol and cloud particulates) 

 

 

Let consider the propagation of EM waves in a medium which is 

(a) uniform, so that ε ε ε ε has the same value at all points; 

(b) isotropic, so that  ε  ε  ε  ε is independent of the direction of propagation; 

(c) non-conducting (dielectric), so that σ = 0 σ = 0 σ = 0 σ = 0 and therefore j =0; 

(d) free from charge, so that ρρρρ =0. 

With these assumptions the Maxwell equations reduce to  
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0=•∇ H
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Eliminating E and H in the first two equations in [14.3] and using the vector theorem, we 

have   
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The above equation are standard equations of wave motion for a wave propagating with a 

velocity   

                                                         
εµ
cv =                                                   [14.5] 

where c is the speed of light in vacuum. 

NOTE: for vacuum: µµµµ = 1 and εεεε =1 in cgs units, but in SI system µµµµοοοο    and ε ε ε ε0000 are constants 

such that ooc µε/1= .  

 

 

• For most substances (including the air) µ is unity. Thus, the electrical properties 

of a medium is characterized by the dielectrical constant εεεε.  

 

Refractive index (or optical constants) of a medium is defined as  

                                                 ε=m                                               [14.6] 

assuming that  µ=1. 

NOTE: Strictly speaking, εεεε in Eq.[14.6] is the relative permittivity of medium (here it is 

relative to vacuum).   

 

 

• The refractive index m=mr +imi in a complex number. The nonzero imaginary 

part mi of the refractive index is responsible for absorption of the wave as it 

propagates through the medium; whereas the real part mr of the refractive index 

relates to the velocity of propagation of the EM wave. 

• The refractive index is a strong function of the wavelengths. Each substance has a 

specific spectrum of the refractive index.  
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• Particles of different sizes, shapes and indices of refraction will have different 

scattering and absorbing properties.  

 

� Refractive indices of water, ice and some aerosol species 

 

 
Figure 14.1 Real and imaginary part of the refractive indexes of water and ice in the IR. 
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Figure 14.2 Real and imaginary part of the refractive indexes of water and ice in the 

visible and near-IR. 

 

 

NOTE: water has low imaginary part in the visible => negligible absorption by water 

drops in the visible 
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Figure 14.3 Imaginary part of the refractive indexes of some aerosol materials (Bohren 

and Huffman, Fig.5.16). 
 
NOTE: Main absorbing species in the SW are black carbon (soot) and hematite (dust), 

but in the LW various species have high imaginary parts of the refractive index. But 

overall absorption (i.e., absorption coefficient) is also controlled by particle size. 
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• Aerosol particles often consist of several chemical species (called the internal 

mixture).  
There are several approaches (called mixing rules) to calculate the effective refractive 

index me of the internally mixed particles using the refractive indices of the individual 

species: 

A) Volume (or mass) weighted mixing: 

                                                    ∑=
j

jje fmm                                                      [14.7] 

where mj is the refractive index of j-species and fj is its volume fraction. 

B) Bruggeman approximation for two randomly mixed species: 
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where εεεεi are the dielectric constants of two materials and fi are their volume fractions. 

Recall that the refractive index is ε=m  

C) Maxwell-Garnett approximation for two specious when one is a matrix (host 

material) with the dielectric constant εεεε2 and another is an inclusion with εεεε1: 
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NOTE: B) and C) approaches can be extended for the n-component mixtures. 

 
� Scattering domains:  

Rayleigh scattering: 2ππππr/λλλλ <<1 and m is arbitrary (applies to scattering by molecules 

and small aerosol particles); 

Rayleigh-Gans scattering: 112 <<−mr
λ
π and 11 <<−m  (not useful for atmospheric 

application); 

Mie-Debye scattering: 2ππππr/λλλλ and m are both arbitrary but for spheres only (applies 

to scattering by aerosol and cloud particles) 

Geometric optics: 2ππππr/λ λ λ λ >>1 and m is real (applies to scattering by large cloud 

droplets). 
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2. Mie-Debye theory. 
NOTE: Mie-Debye theory is often called Mie theory or Lorentz-Mie theory.  

 

Mie theory outline: 

Assumptions: 

i) Particle is a sphere of radius a; 

ii) Particle is homogeneous (therefore it is characterized by a single refractive index 

m=mr + imi at a given wavelength); 

 

NOTE: Mie theory requires the relative refractive index = refractive index of a 

particle/refractive index of a medium. But for air m is about 1, so one needs to know the 

refractive index of the particle (i.e., refractive index of the material of which the particle 

is composed). 

NOTE:  If a particle has complex chemical composition, the effective refractive index 

must be calculated at a given wavelength. 

 

Strategy: 

1) Seek a solution of a vector wave equation (Eq.[14.4]) for E
r

and H
r
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with the boundary condition that the tangential component of E
r

and H
r

be continuous 

across the spherical surface of a particle. Assumption on the spherical surface of a 

particle allows solving the vector equation analytically. 

2) Re-write the wave equation in spherical coordinates and express electric field inside 

and outside sphere in a vector spherical harmonic expansions. 

NOTE: Mie theory calculates the electromagnetic field at all points in the particle (called 

internal field) and at all points of the homogeneous medium in which the particle is 

embedded. For all practical applications in the atmosphere, light scattering observations 

are carried out in the far-field zone (i.e., at the large distances from a sphere): 

3) Apply boundary conditions – match transverse fields at sphere surface to obtain 

scattered  spherical wave Mie coefficients  an and bn which don’t depend on the angles 
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but depend on size parameter x = 2ππππa/λλλλ (a is the radius of the particle) and variable       

y= x m (m is refractive index of the particle). The expression for an and bn are given by 

Eq.[5.2.74] in L02. 

4) Use series involving an and bn to obtain extinction and scattering efficiencies (Qe 

and Qs). 

5) Use series in Mie angular functions ππππn and ττττn to obtain scattering amplitude 

functions S1(ΘΘΘΘ) and S2(ΘΘΘΘ), from which the scattering phase function is derived.  

 

Mie scattering amplitudes 

(also called scattering functions) are introduced as 
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where ππππn and ττττn are Mie angular functions 
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where 
1

nP are the associated Legendre polynomials. 

 

In the far-field zone (i.e., at the large distances r from a sphere), the solution of the vector 

wave equation can be obtained as  
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Eq.[14.12] is a fundamental equation of scattered radiation including polarization in the 

far field.  
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 is the amplitude scattering matrix (unitless) 

For spheres: S3(ΘΘΘΘ) = S4(ΘΘΘΘ) = 0 
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Thus, for spheres Eq.[14.12] reduces to  
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where )exp( ikz is the incident plane wave, and 
ikr

ikr )exp( −
 is the outgoing scattered 

wave. 

 

Fundamental extinction formula (or optical theorem)  gives the extinction cross section 

of a particle 
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But for the forward direction (i.e. Θ =00) from Eq.[14.10], we have  
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Thus, extinction cross section is related to scattering in forward direction.  

 

 

Efficiencies (or efficiency factors) for extinction, scattering and absorption are defined 

as 
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where ππππa2 is the particle area projected onto the plane perpendicular to the incident beam. 

Mie efficiency factors are derived from the Mie scattering amplitude 
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and the absorption efficiency can be calculated as  

                                                     sea QQQ −=                                                    [14.19] 
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Figure 14.4 Examples of Qe calculated  with Mie theory for several refractive indexes.  

(more in Lab 7). 

 

 

 

� Scattering phase matrix  

Recall definition of Stokes parameters (see Lecture 13), which uniquely characterize the 

electromagnetic waves. Let   I0, Q0, U0 and V0 be the Stokes parameters of incident field 

and I, Q, U and V be the Stokes parameters of scattered radiation 
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where P is the scattering phase matrix. 
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where each element depends on the scattering angle (1/r2 is from solid angle) 

For spheres: P22 = P11 and P 44 = P33 

 

NOTE: In general, for a particle of any shape, the scattering phase matrix consists of 16 

independent elements, but for a sphere this number reduces to four. 

 

Thus for spheres, Eq.[14.20] reduces to  
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where each element of the scattering phase matrix is expressed via the scattering 

amplitudes S1(ΘΘΘΘ) and S2(ΘΘΘΘ) 
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P11(ΘΘΘΘ) =P(ΘΘΘΘ) is the scattering phase function defined in Lecture 13. 
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Figure 14.5 Examples of scattering phase functions  calculated  with Mie theory for 

several size parameter for nonabsorbing spheres (more in Lab 7). 

 

Some highlights of Mie scattering results 

• Extinction efficiency vs. size parameter x (assuming  NO ABSORPTION):  

1) small in Rayleigh limit: 4xQ e ∝  

 2) largest Qe when particles and wavelength have similar size 

3) Qe --> 2 in geometric limit ( ∞→x )  

4) Oscillations (see Fig.14.4) from interference of transmitted and diffracted 

 waves 

• Period in x of interference oscillations depends on the refractive index. 

Absorption reduces interference oscillations and kills ripple structure. 

• Scattering and absorption efficiencies vs. size parameter with ABSORPTION: 

As ∞→x : 1→sQ and , entering rays are absorbed inside particle. Smaller 

imaginary part of the refractive index requires larger particle to fully absorb 

internal rays. 

• Scattering phase function: forward peak height increases dramatically with x. For 

single particles – number of oscillations in P(Θ) increases with x. 
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3. Optical properties of an ensemble of spherical particles.  
Mie theory gives the extinction, scattering and absorption cross-sections and the 

scattering phase matrix of a single spherical particle. 

Recall Lecture 4 where the aerosol particle size distributions were introduced.  

If the particles characterized by a size distribution N(r), the volume extinction, scattering 

and absorption coefficients (in units LENGTH-1) are calculated as  
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Single scattering albedo (unitless)  if defined as 
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• The single scattering albedo gives the percentage of light which will be scattered 

in a single scattered event. 

Scattering phase function is  
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Asymmetry parameter is first moment of the scattering phase function and is defined as  
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g=0 for equal forward and backward;    g=1 for totally forward  

 
 
 

• For many practical applications, the optical properties of water clouds are 

parameterized as a function of the effective radius and liquid water content 

(LWC).  
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The effective radius is defined as  
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where N(r) is the droplet size distribution (e.g., in units  m-3µm-1). 

The liquid water content (LWC) was defined in Lecture 4: 
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Using that the extinction coefficient of cloud droplets is 
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and that 2≈eQ  for water droplets at solar wavelengths, we have  
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Figure 14.6 Example of optical properties of typical cumulus and stratus clouds (for a cloud droplet size 

distribution reff = 6 µm) . Here the normalized extinction coefficient is )5.0(/)( mee µβλβ  and 

18.42)5.0( −= kmme µβ . 


