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In the present paper, we have presented a Maxwellian boundary-type solution for total internal reflection

with unbounded incident waves at an interface between two nonabsorbing media, in which the instanta-

neous, time varying, and time averaged radiant fluxes have been determined at all points in the two media.

Solutions for the s and p polarizations were found for which the instantaneous tangential E and H compo-

nents and normal components of the radiant flux were continuous in crossing the interface. From these ra-

diant fluxes, it was possible to derive equations for the flow lines, to determine the instantaneous radiant

fluxes along these flow lines, and to see how the methods of propagation differed in the two media and for

the two polarizations. At the interface, the flow lines and their radiant fluxes experience unusual reflection

and refraction processes, follow curved flow lines in the second medium, and return into the first medium

with boundary conditions, which are mirror images of those at the points of incidence. These unfamiliar

processes in the second medium are due to inhomogeneous waves, whose properties have not been under-

stood. When these instantaneous solutions are extended to time varying and time averaged radiant fluxes,

it is interesting to see how incident planes of constant radiant flux and phase experience such complex pro-

cesses in the second medium and are still able to generate other reflected planes of constant radiant flux and

phase in the first medium. These ideas prescribe specific detailed functions for the E and H fields and radi-

ant fluxes in the second medium, which help to answer many long standing questions about the physical pro-

cesses involved in total internal reflection.

Introduction

Total internal reflection in nonabsorbing media
has been of continuing interest over the years.1 The
primary reasons for this have been that present theories
for unbounded incident waves predict that, in the time
average, all the radiant flux incident beyond the critical
angle on an interface between two nonabsorbing media
is reflected, no radiant flux flows across the interface in
the direction of the surface normals, and a radiant flux
flow appears in the second medium in a direction par-
allel to the interface. There is then apparently a par-
adox, for one can ask how it is possible to have a radiant
flux flow in the second medium and simultaneously
have total internal reflection in the first medium? A
closely related question, of course, is what are the
sources and functions of these radiant fluxes in the
second medium? To answer these questions, it is
necessary to look in detail at the magnitudes and phases
of the radiant fluxes and the geometries of their asso-
ciated radiant flux flow lines in both media under steady
state, time changing, and time average conditions.
Unfortunately, instantaneous and time changing solu-
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tions have been largely neglected, 2 for it is much simpler
to use complex E and H fields and the complex Poynt-
ing vector,3 to calculate the more useful time averages
of the reflected radiant fluxes, and not to consider what
happens in the second medium. It is becoming more
difficult, however, to avoid these problems, for, in ad-
dition to appearing in the optical region,4 these so-called
"up and over waves" are reappearing in long wavelength
regions and creating easily observable unfamiliar
problems.5 There is then a need for a deeper detailed
theoretical study, if total internal reflection is to be
understood.

In the present paper, the authors would like to
present their ideas on a more complete solution for total
internal reflection, in which the properties of un-
bounded instantaneous radiant fluxes and their asso-
ciated flow lines have been followed through both media
under steady state, time changing, and time average
conditions. For this solution, homogeneous, transverse
plane polarized waves are incident on the interface be-
yond the critical angle, and both reflected and trans-
mitted waves of different amplitudes and phases appear
along the interface. The usual boundary conditions
involving the continuity of the tangential E and H fields
are used to determine the amplitudes and phases of
these reflected and transmitted waves, and all the
components are written in their real instantaneous
forms. It is also possible from these E and H fields to
write down the corresponding real instantaneous com-
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ponents of the Poynting vector, from which the slopes
of the flow lines and the equations for the flow lines can
be obtained. From these equations, one can then make
simultaneous studies of these radiant fluxes and their
associated flow lines in both media under steady state,
time changing, and time average conditions and learn
in detail just how these radiant fluxes flow into and out
of the second medium. In our paper, we have placed
primary emphasis on trying to understand the physics
of these processes and have provided several figures
showing the calculated forms of the radiant fluxes and
flow lines under steady state, time changing, and time
average conditions. These studies provide an infor-
mative and realistic description of the physical pro-
cesses associated with total internal reflection.

Electric Vector Perpendicular to Plane of Incidence
The starting point for such a paper must be Maxwell's

equations. For nonabsorbing and nonmagnetic media,
these equations are limited to

Curl E =---, Curl H =--,
c at c at

divD = divH = 0,

(1)

where is a real dielectric constant characteristic of the
medium under consideration. If we polarize the inci-
dent plane wave so that the electric vector in Fig. 1 lies
along the y axis (Ex = E = 0), Eqs. (1) reduce to the
following more useful equations:

Ey 1 HX OEy 1 OH,

Oz c at ax c at

OH, OH - OEy (2)

Oz ax c at

These equations can be solved simultaneously for Ey,.
and we find that Ey must satisfy

O2EY +a 2 EY - E 32E)

Ox2
0z 2 C2

t
2

which is the familiar wave equation. The solutions to
this equation and Eqs. (2) fix the general forms of the
electromagnetic waves in both media. The E and H
components for these incident, reflected, and trans-
mitted waves, in the region below the critical angle,
except for certain boundary considerations,6 are

Ey i = E expli [t -- n (x sin + z cost0)] ,

Hxi = -nl cosfpE, exp{i[wt -- nl(x sins+z cost)],

Hzi = n sinsoE. expli[wt -- n(x sinsp+ z cosv)]J,

Eyr = R exp{i[t -- nl(x sin-z coss)],

Hr = n cosvR, expi[cot -- nl(x sing- z cosv)]

Hr = n sinvR, exp{i[wt - -n(x sin- z cosp)]J,

Eyt = D exp{i[wt - n2 (X sing + z cos&)]J,

Hxt -n2 cosVD, exp{i[wt - n2 (x sing' + z cos)]J,

Ht = n2 sinpD, exp{i[wt - n2 (x sin6 + z cos6) ]}- (4)

In these equations, n = (1)1/ 2 and n 2 = (2)1/ 2 are the
refractive indices of both media, and these are plane,
homogeneous transverse waves, whose planes of con-
stant amplitude and phase are indicated in Fig. 1 and
will be of interest in this paper. These waves must also
satisfy the before mentioned boundary conditions6 and,
to be useful for our problem, limited to angles of inci-
dence beyond the critical angle. If, then, we make the
tangential components Ey and Hx in Fig. 1 continuous
in crossing the boundary, we find that

nI sinp = n 2 sint, (5)

which is Snell's law and is useful in regions below the
critical angle. In regions beyond the critical angle,7
however,

sin- = sinp> 1, cos' = -i 1 2sin2q -11
n2~ ~2 2

(6)

When we substitute Eq. (5) and Eq. (6) in these conti-
nuity equations, R and D will be found to have the
values

R= E exp(ibsr), D, - 2= cosp E exp(i6st),
(n12 n 2

2 )'/2
(7)

where the indicated phase changes after reflection and
transmission are given by

tan 6; = tan, t =(nO 2
sin

2
, - n2

2
)!

2

- = tanbt = --
2 ni cos~p

Fig. 1. Reflection and refraction for s polarization at interface be-
tween two absorbing media with angles of incidence below critical

angle.

(8)

Equations (6), (7), and (8) can now be substituted in
Eqs. (4) to obtain the real instantaneous E and H
components in the region beyond the critical angle,
which are
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E= E, cos[Wt - (x sinso + z cosso)

H= -nI cossoE, cos[ t - - (x sinpo +z cosp)],
xi

Hz = 1 sinpE, cos[wt - - (x sinmp + z cosp)],

Er = Es cos[t - (x sinlp - z cossp) + sr

H.r = nj cossoE8 cos[t - -(x sinso - z cosp) + 5sr

Hzr = ni sinzoEs cos[t - - (x sinso - z cosso) +

Eyt = 2n, cos_ E r 2r 2 n22 1/21

(n,2 - n22)1/2 xl (si - n12)

X cos (wt -- x sinfp + 6 t),

Hxt = - 2n, cossp(n,2 sin2 so - n22)1/2
(n12 - n22)1/2

X exp [-z ( sin2
- 2) 1/2

sin (Wt - 2-7x sinso + b5t

t 2n12 sinpcosso r 2 r n2 _n22\1/2]
(n12 - n22)1/2 nIexP[ A 12 ]

cos (t - -x sinso + bs t) (9)

The waves in the second medium are inhomogeneous
plane waves traveling along the x direction with planes
of constant phase normal to x and planes of constant
amplitude normal to z. Like all inhomogeneous waves,8

they also have a longitudinal component, which, for this
plane of polarization, is Hx t.

Since we know the forms of the E and H components
in both media, it is possible to write down the real in-
stantaneous components of the Poynting vector, which
describe the radiant flux densities. Clearly, there are
only going to be Px and P, components, and these are

c 2 2[ t _27r

Pxi(s)=-nsinspEs2 cos2 [t--(x sinso + z cosso)],

P, i~ =-n cossoE2 [ Cos t- -(x sin~o+ z cosso)

PXr(s) c nL sinfpE8
2 COS [ct - (x sin- z cos0) +

P r(s) = n-n cospE, 2 cos2[Wt - -(x sing' - z cos~0) + 6,r

c 4n13 sinp cos25O
Pt(s) = 4x n 2 22 s

r 411- / n2\ /2 

X exp 4r z sin2 n2_ /2 cos2(.t --- sinn + bs t
[_ xi ( ni 2 I 

P t(s) = c 4nI2cos 2s(n 1
2 sin2p-n22)/2E 2

4r n12 - n22

X exp[ -- z (sin2 - 22)J ]

X1- xi ( sin2(t--sin~o+ (10)
X Cos cot -- 2rsince + ,tsnt 2xsic+5st (0

Xl xl

Since we know the components of the Poynting vector
in each medium, it should be clear, following Eichen-
wald,9 that the slopes of the corresponding radiant flux
flow lines in both media are

/dz\ P2 i(s) ,dz\ Pr(s)
(dzji P, (s) = cot~p' ( ,dx = pr(S) =-cotp

z P (s) (nI2 sin
2

0 - n22)1/2

dx t PX t(S) n, sinso

X tan t - A sinp + &,t). (11)
xi

These equations can be integrated so that the radiant
flux flow lines in both media are described by

Zi(s) = (x - xmi) cots, Zr(s) = -(x -X 1,r) cotxo,

X,(n,2 sin2 ,t'- 122)1/2 r 2r 1

zt(s) = 2i n22 loge Cos (Wt - x sinso + b
27rn, sin2(o I I1 ( i 

-loge [cos (t 2xi. t sin + t)], (12)

in which the xIs i, Xis r, and x 1st are the x values for
which zi(S) = Zr(S) = zt(s) = O. The flow lines in the
first medium are straight lines, but those in the second
medium are curved, are all the same shape, as described
by the first term, but have different depths of pene-
tration, as described by the second term. These radiant
fluxes and flow lines in Eqs. (10) and (12) will be of
primary interest in this paper.

To understand the propagation characteristics of
these radiant fluxes, we have in Fig. 2 plotted calculated
instantaneous Pxi(s), pi(S), pXr(S), pZr(S), pxt(S), and
Pzt(s) values for ni = 1.5, n2 = 1.0, so = 450, and z = t =
0 to see what is happening along the interface. Fortu-
nately, Px i(S) and Pzi (s) are of the same form, are al-
ways positive, and have the same period X1/2 singo along
the x axis. Pxr(s) and Pzr(S) are also of the same form,
but pZr(S) is of opposite sign, and both PX r(S) and pZr(S)

. -

.S

rr

I . jIF T I I I I I

/ _ \ / {(S) PS

1 ? / _ 1, /2 sin P

-C P.(s)
O.4X, -. 2X1 0 0.2?s, 0.4?,, 0.6?X, O.SBs1 OX1

Distance along interface (in X, unitsl

Fig. 2. Components of incident, reflected, and transmitted radiant
fluxes for s polarization along interface (in units of XI) for n, = 1.5,

n2 = 1.0, so = 45°, and z = t = 0.
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Fig. 3. Radiant flux flow lines
zi(s), Zr(s), and zt(s) for s polar-
ization with n = 1.5, n2 = 1.0, so =
450, and t = 0 when x 1i = Xlr =
x,' = -0.1X1 , -0.2087X,, -0.25Xj,

and -0.28X,.

Distance along interface (in XI units)

are shifted to the right by [/(27r sin(,)]6sr, corre-
sponding to the advance in phase r after reflection.
Px t(s) is also similar in form, but is of much larger
magnitude and is shifted to the right by [Xi/(27r
sinso)]&st, corresponding to the advance in phase st
experienced on crossing the interface. P t(s), however,
is more interesting, for it too is shifted to the right by
this same amount, but is alternately positive and neg-
ative, suggesting varying inflows and outflows of radiant
flux along the interface in the second medium with the
same period 1/2 sinso. These curves, to be sure, show
that the P, (s) components are continuous across the
interface for all values of x, but at points to the left of
the zeroes at A and B in the P t (s) curve, corresponding
to inflows of radiant flux into the second medium, these
boundary conditions indicate that

IPzi(s)Iin = IP r(s)Jin + IP 2'(s)Iin, (13)

while to the right of these same points in regions of
outflows of radiant flux,

IPzr(5)i 0ut = IP2i(s)lout + lP 't(s)Iout. (14)

At this point in the discussion, one can only ask how it
is possible for P r(S) l out to be larger than P i(s) out,
and the IPX t(s) l in and P 5 t(S) 1,ut have much larger
values than Px i(s) in and Px i(s) out, which are difficult
to understand.

Our next step is to look at the instantaneous flow lines
in both media, whose forms are determined by Eqs. (12).
In Fig. 3, we have plotted some calculated flow lines for
the same range of x values in Fig. 2 and for the same n,
n2 , s, and t values. The chosen x15values were-O.1Xi,
-0.2087X,, -0.25Xj, and -0.28X,. Within each cyclic
group of period X1/2 sinso, there are infinite numbers of
flow lines, whose shapes in the second medium are the
same, but have different depths of penetration. The
flow line at -0.28X, is very close to the outside limiting
flow line at

2 ir .11-

xis sinap+ t= -(15)
xi ~~2

and has zt (s) values of the same form extending to and
returning from infinity. The flow line originating at x 
= -0.2087X, is particularly interesting, for it crosses
over into the second medium and returns to the first
without refraction. Other flow lines at x s values to the
left of this flow line are refracted in counterclockwise
directions at the points of incidence and reentrance into
the first medium, but flow lines to the right are refracted
in clockwise directions. These are unfamiliar refraction
properties, but the magnitudes and signs of the refrac-
tion angles can be readily checked from Eqs. (11) and
Fig. 2.

The flow lines in Fig. 3, thus far, have added very little
to our understanding of total internal reflection other
than calling attention to their existence and geometry.
Now, however, we are in a position to learn much more
about total internal reflection by utilizing both the ra-
diant fluxes and flow lines simultaneously. For the
radiant flux densities, however, we will use the magni-
tudes of the vectors in Eqs. (10), for these are the
quantities usually associated with the measured radiant
fluxes.10 These are

lPi(s)l =- nEa2cos2[ Cot -(x sin+z cos41)],

lPr(s)l = C n,2C°S2 exp[--(xsin4o-z

47 I rXiP' Cr 4n 2
s4 rOPE x 4irz sin2 n122 21/214r n E n 2 exI- -j ( (P -- ) 2

*cos (ct - sin4 + 6 )

*[n2 s5in241 -_22 sin ( t sin4 + 6t )]1 /2 (16)

In Fig. 4, we have considered only two flow lines, indi-
cated by the dark full lines, originating at x = -0.1X,
and -0.2087XA in Fig. 3, and have plotted instantaneous
jPi(s)j, lPr(S)l, and Pt(s)I values from Eqs. (16) as

dashed lines, in units of [c/(47r)]E5 2, in directions nor-
mal to the flow line in question, using known (x,z) values
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Fig. 4. Radiant flux and radiant flux flow lines for s polarization with

xla = -O.1X, and -0.2087Xi, when nj = 1.5, n2 = 1.0, so = 450, and t
= 0.

from Eqs. (12). At each point of incidence on or
emergence from the second medium, we have also
plotted additional appropriate incident and reflected
flow lines along which corresponding JPi(s)l and
Ipr(s)l values from Eqs. (16) are indicated. We can
now, for the s polarization, give a clear physical picture
of the phenomena involved in total internal reflection
for this particular instantaneous case. In planes normal
to the incident and reflected flow lines, one soon finds
the expected planes of constant radiant flux and phase,
which are common to all the flow lines in this cyclic
group. The refracted flow lines, however, have no
planes of constant radiant flux, but they do have planes
of constant phase normal to the x direction, which are
also common to all the flow lines in this cyclic group.
For the outer flow line, whose x 1 is determined by

--x5 sin41+ 5ar = 7r (17)
Xi ~~2

the incident radiant flux passes through the interface
in such a way that IPi(S) lin = IPt(S) lin and IPr(S) Iin =
0. This particular flow line, then, passes through the
interface without reflection losses and without refrac-
tion, and the normal components of the radiant flux are
also continuous, as expected in Eq. (13). In the second
medium, according to Eqs. (16), the refracted radiant
fluxes experience exponential decreases determined by
the distance from the interface. In Fig. 4, however,
these losses, for such small z values, are more than
compensated for by the decreasing cross sections due
to the flow line shapes and continuous refraction from
the point of incidence up to the peak position

-r sinsp + 6,1 = 0, (18)
X1

so that the peak I PtI(s) in the second medium is much
larger than the peak IPi(s) f in the first medium. At the
point of reentrance into the first medium

271X2a . 1r--sin = -- (19)
Xi ~2

we now find that the changes in magnitude and phase
are such that lPr(S)l Ut = lPt(s)iout and Pi(s)lout = 0,
so that this flow line also passes through the interface
without reflection losses and without refraction and has
normal components which are continuous as predicted
by Eq. (14). This flow line is then most interesting, for
it enters and leaves the second medium without re-
flection losses and without refraction.

The radiant flux densities along the inner flow line
in Fig. 4 have somewhat different properties. At the
point of incidence, there is a clockwise refraction, and
both reflected and transmitted radiant fluxes appear.
There is also a discontinuity in the radiant flux, which
is such that

IPi(S) Iin COS4W= Pr(s)Iin COSW + Pt(S) I in COsW, (20)

where d (72.22050) is the angle of refraction for the
radiant flux determined by Eqs. (11). This, however,
simply says again that the normal components of the
radiant flux in Eq. (13) are continuous in crossing the
interface. The planes of constant radiant flux and
phase in the first medium and the planes of constant
phase in the second medium are the same as those for
the outer flow line, but the radiant fluxes in the second
medium are somewhat larger because of the flow line
shapes, refraction, and closer proximity to the interface.
For the inner flow line, we see that the path in the sec-
ond medium is shorter than that for the outer flow line
and that the paths in the first medium, up to the point
of incidence and after the point of reentrance, have been
increased by equal amounts, so that the planes of con-
stant phase in the second medium are the same for both
flow lines. At the point of reentrance into the first
medium, there is again a discontinuity in the radiant
flux, but now we find that

IPr(s)IOUtcos41= 1pi(s)Out cos41+ lPt(s)l cost/, (21)

so that the refraction is still in a clockwise direction, and
the normal components of the radiant flux, as seen al-
ready in Eq. (14), are continuous in crossing the inter-
face. In Fig. 5, we have also plotted similar calculations
for the xj, = -0.28X 1 flow line, again using the x 1s =
-0.2087X 1 flow line as a reference. The primary dif-
ferences here are that the refraction at the points of
incidence on and reentrance from the second medium
is now in a counterclockwise direction, the refracted
radiant fluxes have much longer paths in the second
medium, although still having the same planes of con-
stant phase, and the exponential decreases in Eqs. (16)
at these larger distances are beginning to reduce the
radiant fluxes. If one continues these calculations with
increasing negative x 1 values up to the limiting xjs in
Eq. (15), the flow lines, although still having the same
planes of constant phase, extend to and return from
increasingly larger distances with negligibly small ra-
diant fluxes at the larger distances. It may be of in-
terest in Figs. 4 and 5 to see that the reversibility prin-
ciple1 1 is also valid for inhomogeneous waves, for the
reflection and transmission properties at each point of
incidence, except for a mirror type image inversion, are
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Fig. 5. Radiant flux and radiant flux flow lines for s polarization with
xI = -0.2087X, and -0.28XI when n = 1.5, n2 = 1.0, o = 450, and t

=0.

just the reverse of those at corresponding points of
reentrance.

All the previous calculations were carried out with
incident IPi(s)I radiant fluxes in Eqs. (10) and (16),
which were stationary and peaked at x = z = t = 0, and
these choices fix the origin of the coordinate system in
Figs. 2, 3, 4, and 5 along the interface. One must then
ask what will happen if the phases of the incident waves
in Eqs. (4) are advanced by some arbitrary amount or
the time is increased. To answer such a question,
clearly one must go back to Eqs. (4), insert some arbi-
trary phase advance A, and repeat all the following
calculations. Fortunately, when this is done, Maxwell's
equations and the boundary conditions dictate that one
must simply insert A in all the periodic terms in Eqs. (4)
and in all the equations derived from Eqs. (4). If, for
example, we advance the phase of the incident wave by
A = 45° or /8X1 and repeat all the calculations in Fig. 2
with this value of A inserted in Eqs. (10), Fig. 6 will be
obtained. These curves are of precisely the same forms
as those in Fig. 2, but each has been moved to the right
by the amount

A
Ax = XI = 0.1768X12wr Sinm

(22)

and has new ordinates for the original x values in Fig.
2, which are determined by inserting A in Eqs. (10). If
all the curves in Fig. 2 are moved to the right by this
amount for A = 45°, clearly all the other curves in Figs.
3 through 5 must be moved to the right by this same
amount. The phases of the waves in Eqs. (4) and (9)
can, however, also be advanced by increasing the time.
Suppose now we increase the phases of the waves in Eqs.
(4) and (9) by increasing the time until ct = 45°. If we
substitute this value for cot in Eqs. (10) and plot these
components of the Poynting vector in a similar way to

Fig. 2, we again expect to obtain Fig. 6 with a shift to the
right of

Ax = Xl = - t = 0.1768X1. (23)
27r sinp sng

This equation, however, tells us that, for any advance
in phase resulting from increases in time, we must move
Fig. 6 to the right with a velocity Vl/sino for an appro-
priate time such that cot = 450, and the new ordinates
in Fig. 6 will be described by Eqs. (10) with either this
value of Ax or the corresponding cot inserted.

The striking things here are the different ways in
which the radiant fluxes are predicted to propagate
through the two media. To try to show this in more
detail, we have in Fig. 7 extended the calculations in Fig.
4 to two adjacent cycles along the interface and have
included other appropriate incident and reflected flow
lines and radiant fluxes necessary for understanding
these processes. Between the outer limiting flow lines
in each cyclic group in Eq. (15), we can, as previously
suggested, expect infinite numbers of other flow lines

.itan -o A
1

c U.i A
1

uA
1Distance along interface (in X 1 units)

S)

U.JA
1

U.14A

Fig. 6. Components of incident, reflected, and transmitted radiant
fluxes for s polarization along interface (in units of X) for n1 = 1.5,

n2 = 1.0, o = 450, and z t = 0, but with an advance in phase A =
450.
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Fig. 7. Radiant flux and radiant
flux flow lines for two cycles of s
polarization with x , = -0.IXI and
-0.2087X, when n = 1.5, n2 = 1.0,

,u,= 450, and t = 0.

in the second medium of the same shapes and having
depths of penetration extending from zero to infinitely
large distances. If now, as required by Eqs. (10) and
(16), we move Fig. 7 to the right with a velocity Vl/sinsp
and, with proper shielding, observe the changes in the
incident and reflected radiant fluxes at some fixed (x,z)
point in medium one, it should be clear that, during the
passage of the first cycle, we will see one complete os-
cillation in the incident or reflected radiant fluxes in
Eqs. (16), as observed along the directions of the flow
lines. During the passage of the second cycle, one must
again see the same oscillation with no interruption in
the magnitudes and phases for the first cycle. These
are familiar phenomena associated with unbounded
waves propagating through unbounded media. If now
an observer with somewhat different shielding and de-
tecting capabilities views the radiant flux propagation
at a fixed point in medium two and again Fig. 7 is moved
to the right with a velocity Vl/sino, infinite numbers of
curved flow lines, above a lower limiting flow line de-
termined by the z coordinate of the observer, now move
across the point of observation at symmetrical positions
about their common peak positions. During the pas-
sage of the first cycle, one can expect to see one complete
oscillation in the radiant flux, whose maximum in Eq.
(16) is a function of the z coordinate of the observer, and
the second cycle will not add anything new. These are
ingenious processes, for incident planes of constant
radiant flux and phase in the first medium, after expe-
riencing these complex processes in the second medium,
are still able to generate proper planes of constant ra-
diant flux and phase for the reflected radiant fluxes.

Many electromagnetic waves are of very high
frequencies, so that, for detection purposes, it becomes

necessary to discuss time averages of these radiant
fluxes. Fortunately, all these radiant fluxes can be
easily integrated and averaged over any arbitrary time
interval. If, then, as has been done by others,2 we in-
tegrate and average the radiant fluxes in Eqs. (10) over
the time 1/v in Eqs. (9) for one oscillation in the E and
H components, we find

p,(s)j -lE 2s
4w 2

Plr(s)l E 2,
4w 2

c 2n, 3sin4ocos
2 4O 2 e 4r '2 22\1/2

4 ,r n, - n22 -E exp- - n

PI(s) = 0.

These are the familiar equations used by earlier au-
thors2 in arriving at their somewhat paradoxial con-
clusions. These equations are, of course, correct
mathematically, but they lose sight of the fact that the
P, I (s) component in Fig. 2 goes through two oscillations
and three changes in sign during this 1/v time interval,
indicating varying inflows and outflows of radiant flux
across the interface. It is much more informative in Fig.
2 to ask how the time averages in the radiant fluxes in
Eqs. (10) change, when Pt(S) goes from the positive
half cycle, corresponding to an averaged inflow of ra-
diant flux, to the adjacent negative half cycle, corre-
sponding to an averaged outflow of radiant flux, for this
is more closely associated with these physical processes
and provides a more realistic time average. If, then, we
integrate and average all the components in Eqs. (10)
over the first half cycle for P (s) in Fig. 2, the time in-
terval is 1/4v, and the limits of integration, from Eqs.
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(10) and (15), extend from [(2r)/(coXi)]xl, siny - [(6t)
/X] to [(27r)/(.wX)]x s sinp - [(6s t)/l] + [1/(4v)J. When
these integrations and averagings have been done, we
find at z = 0 that

lPi(s)1i =C (c 2+-sin2bt)Ea2,
47r ( r

IPr(s)lin C (/2- 1sin26, E,2,4r 7r ,

P t(s)..= c 2n, 3 sin4ocos2 4E 24r n12 -n22
-zt~s kin c 4n,2 COS2 1(n,2 sin 2 41- 22)1/2 (25

Pt(S) 4r Er(n2-2n2 )5)

Similar integrating and averaging are also readily done
over the adjacent negative cycle in Fig. 2 with limits
extending from [(2r)/(wXi)]xis sino - [(6st)/c] + [1/(4v)]
to [(27r)/(coX1)J x, sinp -[(6.t)/coJ + [1/(2v)]. The re-
sulting equations are similar in form to Eqs. (25), but
the second terms in Pi(s)Iout and IPr(S)Iout have op-
posite signs, and Pz t (S)out is negative. If, then, we av-
erage these equations over adjacent in and out cycles or
over sufficiently long periods of time, we learn that, in
the time average, all the incident radiant flux is reflected
and all the radiant flux entering the second medium
returns to the first medium. This is a much more in-
formative and realistic conclusion and avoids the earlier
controversies. 2

Electric Vector Parallel to Plane of Incidence
It has already been inferred that total internal re-

flection for the p polarization will differ from that for
the s polarization, and we would like to indicate briefly
some of the significant differences. With Hy along the
Ey direction in Fig. 1 and Hx = H = 0, we find that
Maxwell's equations in Eqs. (1) reduce to

0.5X1i -< 

O.5X, 

0.4> _/ al 

&3X1 / - > 0 14z 

^0.2E 0.

0 4X -O.2 0 0.X 1 O.4X,
Distance along interface (in X1 units)

Fig. 8. Radiant flux and radiant flux flow line for p polarization with
xlp = -0.0639X1, when n = 1.5, 2 = 1.0, = 450, and t = 0.

aH = _EOE _ H, = _ E,__ = IaH,
az c at ax c t Oz ax c at

(26)

These equations can be solved for Hy, and, when this
is done, it will be found that Hy must satisfy the same
wave equation in Eq. (3), as found for the Ey component
for the s polarization. If we write down the solution to
the wave equation, when expressed in terms of the
parallel Ep component, determine the forms of the
other E and H components for the incident, reflected,
and refracted waves in the region beyond the critical
angle, and then make the tangential components Ex and
Hy continuous across the interface, the real instanta-
neous incident, reflected, and transmitted E and H
fields are

Hyi = nE, cos[Wt - A (x singp + z cos41,)

E= cos41Ep cos t - (x sin4 + z coso)],

Ei -sin 4 1 Ep cos[ Wt - (x sin1 + z cos41)],

Hy = nEp os t - (x sinp- costp) + 6pr] (27)

E r =-cos 4oE, cos [t -2- (x singp - z coso) + bprj,

Ezr =-sin4pEp cos[t - (x sin - coso) + pr

t ~~~2nin22 costs
Hr = .- E

(n2-n22)1/2[(n12 + n22) sin2 o-n22]1/2P

XexpJ-A z sin2O- 122) 1/2] Cos(t- 2x sin +6Pt41 x i cos2t-xs~4+~

Et = 2n, cos1(n, 2 sin 241- n22)1/2 E

(n, 2 - n2
2)'/2[(n, 2 + n22) sin2 -n22J1/2 P

X exp[- 2z(sin2 - n)1/2] sin(cot -- x sin41+ Pt

E t = 2n,2 sin coso -E
(n+2-n22)1/2[(n,2+n22) sin2 1o-n2211/2 P

X exp 2rz(sin2 122 ] co 2t--x sin\+ pt

where the phase changes after reflection and trans-
mission are

t = nl(n,2 sin2 0 - 22)1/2
tan -= tanbp 2

2 n22 cos
(28)

The waves in the second medium are again inhomo-
geneous waves, with planes of constant phase normal
to the x, planes of constant amplitude normal to z, but
now have a longitudinal Ex t component.

From these equations, we can also write down the real
instantaneous components of the Poynting vector, and
it is clear again that we are only going to have Px and P,
components, which are
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P i(p) = nl sinEp2 cos 2 [cvt-p (x sinp + z cos1)

pz~)=4n, cosepEp 2 os2 cot -2r(X sinso + cos~p) ]4w7

C F 2w 

pxr(p) = ni sinsoEp2 COS2 t - x (x sinso - z COSs) + pr]Pz~(p) =4ncos1Ep 2 cos2 et--(x sin1 z c5)I+b,

p t( )=- 4nlco2 fnwtos E 2 r]C Cxpp-2Csin 2 - (x sin -cos- Z C05 + 4 P1PZr(p) =-4 121 CO4~P Iw - xsin1-Zc5)+ r,

C 4 213222 sin Cos 5
2 (P E 2

Pxt(r.) =4wr (n12 - n22)[(n2 + n22) sin21 - n222] P

X exir z (Sin P- cos/2 K0[w -- 7x sin41 + P
I- n21 1/2 2xi

Pp)=c 412,2122 Cos 241(n,2 in241 - n2 2)12 EP 2
Pz~)=47 (12 - 222)[(1212 + 222) in

241 - 2 21

X exp [- -z sin2 -n 2)J]

X7 sitt- 2inr ptco t-x sinv + t ). (29)

The Pi(p) components, except for a different incident
amplitude Ep, are of the same forms as the Pi(s) com-
ponents in Eqs. (10). The pr(p) components are also
similar in form to the Pr(s) components, but the phase
changes after reflection are different, so that the pr(p)

components will be shifted to the right in Fig. 2 by

Ax = - (p - r) (30)
2 sin41

from the corresponding pr(S) components. For the
Pt(p) components, one must also expect a shift to the
right of

Ax = X, (pt - kt), (31)
2r sinso

but the ordinates of the Pt(p) components are larger
than the Pt(s) components in Fig. 2 due to the factor
n 2

2 /[(n1 2 + n2
2 ) sin 2 <p - n2

2 ]. The slopes and forms of
the p flow lines can be determined, using the same
methods as for the s polarization. These considerations
show that the incident and reflected flow lines are of the
same form as for the s polarization in Eqs. (11) and (12).
In the second medium, however, we see from Eqs.
(29)

dzX P I(p) =(n,
2 sin24p - n22)1/2 tan cot- 2r 6 

dx )t =p., t (p) n, sinmo xi) 

X(n12 sin 21 n22)1/2 e - 2r .sin4 + 6 1

Zp)= 27rn, sin2 (P og LcsIt- I ( + 1 I

-loge [Cos ct (J--Xi sinV + bp (32)

The flow lines for the p polarization in the second me-
dium will then for the same x 1 , and x 1p, have the same
shapes as those for the s polarization, but they will be
shifted to the right by the amount indicated in Eq. (31)
and have different penetration depths.

To give a brief indication of other differences between
the two polarizations, we have in Fig. 8 plotted calcu-
lated instantaneous jPi(p)J, IPr(p)I, and IPt(p)I ra-
diant fluxes along their appropriate flow lines, as ob-

tained from Eqs. (29) and (32), for which there were no
reflection losses along the interface. This choice was
made so that a comparison could be made with the
corresponding s polarization in Fig. 4. From Eqs. (17),
(18), and (19), we find for a p flow line with these
properties that x1p = -0.0639X,,x 2 p = 0.3536X1 and the
peak radiant flux appears at x = 0.1448X1, as shown in
Fig. 8. This flow line, although exhibiting no reflection
losses along the interface, has properties quite different
from the corresponding s flow line, for it has a discon-
tinuity in the radiant flux at the interface, is refracted
in crossing the interface, has a different penetration
depth, is shifted to the right by the amount indicated
in Eq. (31) and has a much larger radiant flux flow, due
to the previously mentioned multiplication factor. The
discontinuity in the radiant fluxes is of the familiar form
for which the normal components are continuous and
the tangential components discontinuous, as is neces-
sary in order to have refraction. This one sampling of
the radiant fluxes and flow lines indicates that we can
expect the p flow lines to have the same shapes and
different penetration depths, but they will all be dis-
placed to the right by the amount suggested in Eq. (31),
and the radiant fluxes along these flow lines and the
boundary conditions at the points of incidence and
reentrance into the first medium will all be expected to
differ from the s polarization. It is, of course, proper,
from the viewpoint of physical optics, for the p polar-
ization to be moved to the right by this amount, for el-
liptically polarized radiant fluxes must appear, when
Fig. 7, with both polarizations present, is moved to the
right with a velocity Vl/sinp.

One other problem with somewhat broader implica-
tions remains. If we have a plane surface which is black
over a solid angle xr and responds only to long time av-
erages in the radiant flux, it is of interest to know what
such a surface might see in the second medium for the
two polarizations, when it is moved up close, but not in
contact at the interface, and how such a surface might
be expected to modify the reflected radiant flux in the
first medium. With regard to the first problem, it
should be clear from Eqs. (10) and (25) that, if we inte-
grate and average over adjacent in and out cycles for a
fixed z, the time averages of the radiant fluxes for the
s components seen in the second medium will be

x S C 2n 13 sinfo cos2 (P, 2 ex 4r Z i2(n22 1/2],

4r n12 -[n22 Es X n222\ /

P t(S C 2n1,2 cos(n,
2 sin

241 - n22)1/2 E 2

4r 7r(n2 - n222)

X exp -- z(sin 2pO -n2 ]- (33)

The specific assumption made here is that the surface
sees no radiant flux moving toward the interface in the
out cycle in Eqs. (25), so that the above P, t (s) is simply
one half of the predicted Pzt(S)in at the z value in
question. Similar integrating and averaging for the p
components in Eqs. (29) will yield P. t(p) and Pz t(p)
components of the same form, but with the previously
indicated multiplication factor. In Fig. 9, we have given
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0 0.5N, lON 1.5
itX 1.e5,f 1.5a °n 5n

Distance from interface (in Xl units)

2.0X,
0

Fig. 9. Time averages of s and p radiant fluxes in second medium
at different distances from interface with Ep = E n = 1.5, n2 = 1.0,

and o = 450.

some calculated Pxt(S), Pzt(s), Pxt(p), and Pzt(p)
values for varying z positions, when Ep = Es. The ab-
scissae for the two polarizations are in units of Al, but
those for the s polarization must be viewed from left to
right, while those for the p polarization must be viewed
from right to left. It is clear from these calculations that
Px t (s) and Px t (p) are much larger than the FZ t (s) and
Pz t(p), so that the radiant flux flow in the time average
is predominantly along a direction parallel to the
boundary in the second medium. We see also that
Px t(s) and P t(p) are much larger than IPi(s) , indi-
cated in the lower part of the figure, so that the refrac-
tion properties and flow line shapes in the second me-
dium increase the flow line densities along the x direc-
tion, when compared with the corresponding flow line
density along the incident radiant flux. We find also
that Pxt(p) > Pxt (s) and Pzt(p) > Pzt(S), so that the
radiant flux for the p polarization is more successful in
passing through the interface, as is also the case for more
familiar problems.12

0 ° 5N, 1.0X1 1.5x 2.0,
2.0X, 1.5X, 1.0N, 0.5X1 0

Distance from interface (in X, units)

Fig. 10. Time averages of s and p reflected radiant fluxes in first
medium, when a perfectly black absorbing surface is moved from z

= 2.0X1, to z = 0 with Ep = E,, n = 1.5, 2 = 1.0, and s = 45°.

To determine just how such an absorbing surface
might be expected to affect the reflected radiant fluxes,
we must, for the s polarization, return to Eqs. (13), (14),
and (25). For the in cycle, it is clear that the radiant
flux flow across the interface is not going to be affected
by the absorbing surface, so that Eqs. (25) in their
present forms will also be useful here. For the out cycle,
however, PZ (s)out must still be the same, but Pz t(s)out
and Pzr(S)out will be different. We have already seen
in Eqs. (33) that the role of the absorbing surface is
simply that of absorbing all the radiant flux incident
upon it. For the remaining unperturbed flow lines re-
turning to the interface, the out cycle must then be

IP'(s)lout = -ni (1/2 - sin2bst)Ea2,

lPr(s)I'uts=-cn1 /2 +!sin26st) (1 -f.)E, 2 ,
47r ( r

Pxt(s)out = c 2n1
3 sin4cos 2

E 2
P.().'4r n? - n22

X 1-exp[4A Z(sin21 n&) 21/2}

= 4n2 C 241(n1
2 sin21 - n22)1/2

4w 7r(n2-n2 2)

X E2J r 1-exp [- Z 47nw 222 1 /2X 2 -exp -- Z 151n2 4 I) (34)

where fs is a factor determined by the boundary con-
ditions. If in Eq. (14) we make the time averages of the
normal components of the radiant flux continuous
across the boundary, f becomes

= 4n, cos1(n, 2 in21 - n22)1/2

1r(n 2-n22) (1/2 + sin2 t)

X exp[ 4wr z sin2 _ n2 2) 1/2]

H i ( ~~~12i (35)

To obtain the time average of the radiant fluxes in this
particular case, we must average the in and out cycles
in Eqs. (25) and (34), so that

1pi(s)1 =--E 2 ,
47r 2

lpr(s)l =- ( [1 M12 + sin26st)fs]Es

p t(S) c 2n,3 sin1cos41
4r n12-n22

X I 11/2 exp [-- Z sin2s 2 1/2] }Es 2,x fi -i ( - 12

P t(S) c 22COS 241(nl2sin 24 -n22)1/2
47r 7r(n,2 - n222)

X exp -4rz sin2O_ 1n22)1/2]1
X e x p X1(1212 J (36)

These equations describe the time averages of the ra-
diant flux flow in both media for varying z distances of
the absorbing surface from the interface. Similar
equations for the p polarization can also be obtained by
replacing E by E, e t by e t by fp and inserting the
multiplication factor in PxtS)and Pzt(s). The new
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factor fp is obtained from fs by also replacing 3s t by As t
and inserting the before mentioned multiplication
factor. These are interesting equations, but we are only
committed to discuss how 1Pr(s) and IPr(p) I change
as the absorbing surface is brought up to the interface
without making optical contact. We have, therefore,
in Fig. 10 plotted some calculated I Pr(s) I and I pr(p) I

values for different z distances of the absorbing surface
from the interface. At large distances, Eqs. (36) go over
into Eqs. (24), so that the Pr(S) I values approach the
upper limit [c/(87r)]nE5 2 at which the absorbing surface
has no effect on the reflected radiant flux. As the ab-
sorbing surface is moved closer to the interface, the in-
creasing exponential terms in f, introduce losses in
I Pr(s) which increase as z decreases. At z = 0, where
the gPt(s out components vanish in Eqs. (34), the re-
flected IPr(s I components in Eqs. (36) have two con-
tributing components, Pr(S) I inand I i (s)in Eqs. (36)
and reach their minimum value at this point. The
I Pr(p) I in Fig. 10 yield similar results, but the losses at
smaller z values are greater, due to the presence of the
p polarization multiplication factor in fp, if we set Ep
= E. There are other interesting phenomena to be
explored here.

Conclusions

In this paper, we have supplied a much needed solu-
tion for total internal reflection, which gives a clear
picture of the physical processes involved. This was
done by using boundary value problem techniques, of
the same form used in deriving Fresnel's equations,13

and by looking at the flow lines and associated radiant
fluxes at different points along the interface in the
stationary, time changing, and time averaged states.
Our theory shows in the stationary sense that all the
radiant flux is not reflected at the interface, but that
both reflection and transmission simultaneously appear.
The transmitted radiant fluxes, however, follow curved
paths in the second medium and reenter the first me-
dium in such a way that the incident radiant fluxes, in
conjunction with the specularly reflected radiant fluxes,
give the appearance of being completely reflected at the
interface. For both polarizations, the flow lines in the
two media have the same forms, but those for the p
polarization are advanced along the interface by an
amount depending upon their differences in phase in
crossing the interface. The radiant fluxes along these
flow lines and the boundary conditions for the two po-
larizations at the points of incidence and reentrance,
however, are quite different. All these unusual reflec-
tion, refraction, and propagation characteristics are due
to the inhomogeneous waves in the second medium, and
it was interesting to the authors to see how incident
planes of constant radiant flux and phase experienced
such complex processes in the second medium and were
still capable of generating reflected planes of constant
radiant flux and phase in the first medium. To show
how the radiant fluxes change with time in both media,
the theory indicates that the periodic arrays of sta-
tionary flow lines and radiant fluxes must be moved
along the interface with a velocity Vl/sino, and the

magnitudes and phases of these radiant fluxes observed
at fixed points in either medium. For cases in which the
time constant of the detecting device is long compared
with time for one oscillation in the radiant flux, we have
also calculated the time averages of the radiant fluxes
in both media and have determined how an absorbing
plate, when placed close to the interface in air, might
affect the reflected radiant fluxes. By proceeding in
this way, we have been able to provide a much more
informative and realistic description of the physical
processes involved in total internal reflection and re-
move many of the earlier difficulties. There will, of
course, be other questions, but we hope that these ideas
will provide a deeper insight into these problems and
aid in their solution.

This paper was presented at the annual meeting of
the Optical Society of America, in Toronto, October
1977.
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