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2 THEORETICAL ANALYSES OF AEROSOL MICROPHYSICAL AND OPTICAL
PROPERTIES

2.1 Size distribution function

The size of particles in the atmosphere usually spans a wide range, which results in a large
standard deviation in the normal (Gaussian) distribution for fit of the observed particle sizes.
Aerosol size distributions are represented by a normal distribution of the logarithm of the particle

radii, called lognormal distribution, in which the natural logarithm of radii is normally distributed

(Levoni et al. 1997). The lognormal columnar volume size distribution function i{vl_irr) is given by

(Schuster et al. 2006)

dv(r) _ C 1 (In r=Inry)?
dlnr ~ v2m InS [_ 2(ns)z P 2.1)

where C represents the column volume of all particles per cross-section of atmospheric column

S . . . dv .
which is obtained by integrating Tflrr) over all sizes i.e.

C = [fmax V@ gy 2.2)

I'min dInr

This parameter C controls the overall scaling of the distribution. The quantity (;Vl—ilrr) is normalized

if C=1.0. ry, is the volume median, or modal radius; half the particles are smaller and half larger
than ry,,. The modal radius is the radius of maximum frequency of the distribution. The median
and modal radii are identical for lognormal distributions. S is called the geometric standard
deviation, which is related to the standard deviation ¢ of the natural logarithm of the radius Inr
(i.e. the radius in log space) by S = e°. The dimensionless quantity S gives the spread (or width)
of the distribution. The parameters r,, and S are constants for a given size distribution. The values

of S (must be > 1) lie in the range 1.5-2.5 for realistic atmospheric aerosols (Zender 2010). For

monodisperse particles, S = 1. The factor v2m on the denominator comes from the normalization



(00} 2 .
property of the Gaussian function i.e., f_+oo exp (— X?) dx = v2m . The common units for the

volume distribution dV/dInr are pm® pm™. The reason behind the use of volume concentration is
that the optical effects of atmospheric aerosols are more related to their volume rather than their

number (Whitby 1978).

The columnar particle number size distribution n(r) in the units of number of particles per unit

area per size interval in the whole atmosphere column is given by
n(r) = fOZ N(r,z)dz, (2.3)

where N(r,z) is the local number concentration (number per unit volume) per size interval.

Assuming spherical particles, we have

total particle volume I'max dV(r) I'max4 3 I'max 1 dV(r)
= —= dlnr = -mr’n(r)dr = - — 2.4
area of air I'min dlnr frmin ( ) J.rmin r dlnr ( )

Hence, n(r) is related to the volume size distribution observed by an AERONET Cimel sun-
photometer as (Sayer et al. 2012)

3 dv(r)
4mrt dinr’

n(r) =

(2.5)

Eq. 2.5 is used to integrate the individual particle single scattering properties derived from the
Mie theory for spherical homogeneous particles (Bohren and Hoffman 1983), or other for non-

spherical particles.

Fig. 2.1 depicts examples of measured aerosol bimodal lognormal volume size distributions at
the University of Nevada, Reno (UNR), which consist of fine and coarse mode aerosols. The

bimodal size distribution can be given by a linear combination of two lognormal functions given



by Eq. 2.1 for fine and coarse modes. Fig. 2.1 (left) is a size distribution for a smoke event in
Reno on 26 August 2013 at 17:00 Local Standard Time (LST) measured with AERONET
(aerosol robotic network) Cimel sun-photometer. The strong predominance of the fine mode
implies the presence of small smoke particles. Fig. 2.1 (right) is the aerosol size distribution
derived from the MFRSR (multi-filter rotating shadow-band radiometer) data on 24 April 2013 at
14:29 LST during a dust-storm event in Reno. The strong predominating feature of the coarse
mode particles over fine (or accumulation) mode is a typical characteristic of a dust outbreak
episode (Sicard et al. 2014). The volumetric parameters such as volume median radius, standard
deviation and volume concentration for each mode of both dates are reported in Table 2.1. The
values of the standard deviation are taken to be 0.42 and 0.61 for the fine and coarse modes,
respectively (Dubovik et al. 2002). For the smoke event, the ratio of fine to coarse volume

concentration was 10.0, and for the dust event, the coarse to fine volume concentration ratio was

5.3.
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Figure 2.1 Bimodal lognormal aerosol size distributions observed in Reno: (left) during the
Rim fire on 26 August 2013 at 17:00 LST measured with the AERONET Cimel sun-
photometer and (right) during a dust storm on 24 April 2013 at 14:29 LST derived from the
MFRSR data.



Table 2.1 Size distribution function parameters for the Rim fire and dust cases

Particle mode Concentration (um’ um™) | Median radius (um) Standard deviation
Coarse

26 August 2013 0.015 2.734 0.61

24 April 2013 0.088 2.772 0.61

Fine

26 August 2013 0.151 0.169 0.42

24 April 2013 0.016 0.196 0.42

2.2 Spectral bulk scattering properties

For a given size distribution n(r), the bulk (or mean) scattering properties at a specific

wavenumber Vv are obtained by integrating the single scattering properties for individual particles

over particle size distribution as follows (Yang et al. 2005; Baum et al. 2006):

[rmax Qg (VA(N(r)dr
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where (Qext(V)), (Qsca()), (Qaps(M)), (w(v)), and (g(v)) are the mean extinction efficiency,
scattering efficiency, absorption efficiency, single scatter albedo, and asymmetry parameter,
respectively. The term r.s is the effective particle radius, or the area-weighted mean radius of an
aerosol distribution which characterizes the radiation extinction properties of the distribution.
V(1) is the volume of the individual particles and A(r) is the geometric projected area of a particle
perpendicular to the incident plane. Similarly, Qext(1,V), Qgca(r,Vv), and Qups(r,v) are the
extinction, scattering and absorption efficiencies, respectively, for the individual particles at a
specific wavenumber. These quantities are computed using the Mie theory (which is described
shortly in brief). The scattering asymmetry parameter is defined as the average value of the cosine
of the scattered angle, weighted by the intensity of the scattered radiation as a function of angle.
Its value is 1 for perfect forward scattering, -1 for perfect backscatter, and 0 for isotropic

scattering.

The scattering phase function (P(8,V)) specifies the fraction of radiation scattered in a certain
direction which is given by
[y X p(0,1r,v)Qsca (rV)A(MIN(r)dr

<P(e’ V)) - fr?;?lx Qsca(rV)A(M)n(r)dr ' (212)

The Henyey-Greenstein (H-G) phase function is the most widely used ‘model’ phase function,

and is given by (Petty 2006)

1-(g)*
Py_c(6,v) = 3, (2.13)
(1+(g)*—2(g)cosB)2
where 0 is the angle between the original direction of the incident photon Q' and the scattered
direction Q, such that cos® = Q'.Q . This function is isotropic for g = 0. For g > 0, the function

can reproduce the observed forward peak in the phase functions of real particles.
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The parameters Qeyt, Qgcar Qaps, and g for a single homogeneous sphere is obtained from the

Mie theory in the form of an infinite series (Hansen and Travis 1974):

2 woo so:
Qext = 37 2j21(2j + 1) Re(a; + by), (2.14)
2 woo roe . "

Qsca = X2 Zj:l(zl +1) (ajaj + bjbj ), (2.15)
Qabs = Qext = Qscas (2.16)
__ 4 o [i1G+2) o * bib? @Ci+D palab? 217
&= X2Qgca ZJ'=1 G+1) € (aiai+1 + D i+1) + iG+1) e(ai ]') : (2.17)

The heart of the Mie scattering problem lies in the computation of coefficients a; and bj, which

. . 2 . o
are functions of the size parameter x (where x = %, and A is the incident wavelength) and the

complex refractive index, and involve spherical Bessel functions. The series converges whenever

the number of terms j in the series is slightly larger than x, i.e., j is an integer closest to (x +

4X% + 2) (Petty 2006). Higher order terms correspond to light rays missing the sphere. The
infinite series actually represents the multipole expansion of the scattered light. The coefficients
a;j specify the amounts of electric multipole radiation whereas b; specify the magnetic multipole
radiation. For small particles with a small refractive index, only the electric dipole radiation is
significant, and Rayleigh scattering takes place. Fig. 2.2 illustrates the asymmetry parameter for
Rayleigh and Mie scatterings. For large particles all multipoles with j < x contribute. For much
larger particles, usually x > 2000, computation of the Mie theory suffers both a computer-time
issue and a numerical precision issue due to round-off errors as a consequence of the large value

ofj.
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Figure 2.2 Illustration of the phase function for various values of the asymmetry parameter
(courtesy: D. Mitchell).

2.3 Physical characteristics of the aerosol problem

This section presents a simple idea about the physical characteristics of the aerosols such as total
volume of the aerosols per unit area of the atmospheric column above an instrument. Assume an
aerosol-laden atmosphere of volume V observed by an instrument at the surface, whose area is A

and height is Z as shown in Fig. 2.3 (left).

T ey
\\\____r_____/

surface surface

Figure 2.3 Aerosol-laden atmosphere above an instrument at the surface: aerosols
distributed over the whole column of the atmosphere (left) and a cube representing the total
volume of the aerosols in a unit area (A=1 m®) of the atmosphere (right).
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Referring to the fine mode concentration on 26 August 2013 (Table 2.1), we know that the total
volume of all the aerosols present in a column of atmosphere of 1 pm” area is 0.151 pm’, which is
equivalent to the volume of 151 mm?® in an area of 1 m” This is, in fact, the volume of all acrosol
particles when gathering them together in an area of a unit square meter (Fig. 2.3, right, where A
is assumed to be 1 m?). This volume then represents a cube of side 5.3 mm in this particular case.
Is it not a tiny volume of matter dispersed into the whole column of the atmosphere, which we are

dealing with?

2.4 Pedagogical model for IR radiative forcing by aerosols

We consider a simplified atmosphere containing water vapor and coarse mode aerosols such as
mineral dust (Fig. 2.4) where dust resides only in the boundary layer (0-3 km). Let T be the
surface temperature and T, be the atmospheric temperature.

TOA

transmitted forward upward
radiation scattering emission

water vapor and coarse mode aerosols T

l backscattering lifownward

emission
surface

emission
T

7 7 7 7 7 7 /77 7 /7 /7

Earth’s surface

Figure 2.4 A simplified atmosphere containing water vapor and coarse mode aerosols.

The radiance at the TOA is given by

Rroa(v) = B(T,v) exp[—(THZO + Tg}(‘ft)] + B(Ta,v)[l — exp{—(‘rHZO + ‘rg{)‘st)}] +

abs abs

B(T) tdust (%) exp(—thz9), (2.18)
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where v is the wavenumber; B is the Planck’s function; T:bs is the absorption optical depth of

water vapor; Tg)‘(‘t“ , ngst, and U5t are the extinction, absorption and scattering optical depths,

respectively of coarse mode aerosol such as dust; and ( Z ) represents the probability of

scattering in the forward direction. Similarly the radiance at the BOA is given by
Rpoa(v) = B(T,, v)[1 — exp{—(thzy + tdish)}] + B(T) tdt (S8) exp(—thzd).  (2.19)
where (%) represents the probability for backward scattering. The second term in Eq. 2.19,

therefore, signifies the surface IR backscattering by atmospheric dust.
The spectral radiative forcing at the TOA, ARtga(Vv) is obtained by subtracting Rpga(v) with

dust from Rpga (V) without dust. Therefore,
ARToa(v) = B(T) exp(—to2d)[1 — exp (—td%Y)] — B(T,) exp(—tiz)[1 — exp(—tdist)] -

B(T) tdust (1+g) exp(— rabs ) (2.20)

Assuming td4st and nggt are far less than 1, then Eq. 2.20 can be written as

AR70a(v) = exp(—Thze ) [B(T) Tt — B(T,) Tst] — B(T) 18 () exp(—They). 2.21)

dust
. T . .
Using w = f;f;t i.e., single scattering albedo, we have

Text

AR70(v) = exp(—Thzd) [B(T) tdt {1 - 228} — p(r,) dust]. (222)

In the limit, w = 0, i.e., zero scattering approximation

ARToa(v) = 1385t exp(—Th20)[B(T) — B(T,)]. (2.23)
We see that, for a large value of T?ﬁf (i.e. moist atmosphere), the dust radiative forcing at the

TOA, ARtoa(v) becomes small. Also, the forcing decreases with increasing atmospheric

temperature T,. In the limit, w = 1 i.e., zero absorption approximation

AR70a(v) = exp(—Tozs) B(T) () rdis. (2.24)
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Apparently the backscattering of the surface-emitted IR by the dust causes the radiative

forcing to be important. If ARtga(v) > 0, less IR leaves at TOA in the presence of dust and

hence the atmosphere gets heated. Using toUSt = (1 — w)Ttd¥st, Eq. 2.22 can be re-written

generally as

(1+g) B(T,)
AR7oa(v) = B(T) T4t exp(—1/20) [1 ~ 2B (1-w) =) (2.25)

The spectral radiative forcing at the BOA, ARgoa(v) due to dust is obtained by subtracting

Rpoa (V) without dust from Rgga (V) with dust i.e.

ARgoa(v) = B(T,) exp(—20)[1 — exp{—(1 — w) t8%Y] + B(T) rg)‘(‘ft( ) exp(—To2d).

Assuming small 95t | we have

1- B(T,
ARpoa(v) = B(T) it exp(—thzd) [ (SE) + (1 - w) B((T)) : (2.26)

B(Ta) T&  (TA (1 _AT\' 4 _ AT
Notice that > B(T) T4,andT4~(1 T) ~ 1—4— Then

ARpoa(v) ~ B(T) 1t exp(—thzd) [ (SE) + (1 — o) (1-43)] 2.27)

For the zero aerosol absorption and emission case, w = 1,

ARpoa(v) = B(T) Tt exp(—150) (). (2.28)
Even though the dust aerosols do not absorb IR at all, the backscattering of IR by the aerosols
contributes to IR radiative forcing. Also, the aerosol IR radiative forcing enhances in the drier
atmosphere. This offers positive feedback on the climate warming. For a warmer planet, B(T)
goes up and contributes to the positive feedback. For w = 0,

ARpoa(v) = B(T,) tibs" exp(~Toiy). (229)
Eq. 2.29 is the zero scattering approximation, which can be used to investigate the perturbation
due to any other greenhouse gas. The approximate forcings given in Egs. 2.25 and 2.26 were also

presented by Dufresne et al. 2002, though without the dependence on water vapor optical depth.



