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where the subscript N denotes components
normal to the path of the particle, and the sub-
scripts R and @ denote components in the radial
direction and perpendicular to the radius, respec-
tively. .

As to the origin or nature of this transverse
force produced by motion, it is of interest to
observe that it is similar to the ‘“fundamental
law’”" proposed in a posthumous note by Gauss®
for the mutual action of two clements of elec-
tricity in relative motion. The occurrence of ¢?
stems from the ideca of the attraction being
transmitted with the speed of light.

The Birkhoff force equations for a planctary
orbit can be summarized, according to this anal-
ysis, as follows: They are the equations one

8 C. F. Gauss, Werke (Gottingen, 1863-74), Vol. 5, p. 616.
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would obtain from a Newtonian attractive force
acting on the Lorentzian local mass of the planet,
with the addition of forces caused by motion,
transverse to the path of the planet, which do
not affect the conservation of energy but alter
the areal constant. The precise value of these
added forces and the method of obtaining them
is thus of crucial importance. Apparently these
forces are not introduced by Birkhoff with con-
scious resort to physical concepts, but they are
present because of his choice for gravity of the
third term® of a formal expansion in rational and
integral components of a typical force function,
in which successive terms are of increasing com-
plexity and hence provide for additional force
components. An independent physical derivation
of these transverse forces would be welcome.
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When a plane non-uniform electromagnetic wave is refracted between two conducting
media, there are two possible positions for the propagation vector in the second medium.
Consideration of the energy flow shows that each solution holds within a certain range of
values of the (complex) angle of incidence, the transition from one to the other occurring in a
discontinuous way. The two cases of the electric vector perpendicular and parallel to the plane

of incidence are discussed.

(1) INTRODUCTION

HE problem of the refraction of a plane
non-uniform electromagnetic wave at the
plane boundary between two conducting media
is not generally fully discussed in textbooks where
it is pointed out that, with the use of complex
angles of incidence and refraction and of complex
propagation vectors, the problem is formally
identical to the usual one in which perfect dielec-
trics are involved.!

It is the purpose of this paper to complete this
treatment discussing the new physical features
which appear when both media are conducting,

1 See, for instance, J. A. Stratton, Electromagnetic Theory

(McGraw-Hill Book Company, Inc., New York, 1941),
pp. 500-524.

in particular, a discontinuity occurring in the
(complex) propagation vector in the second
medium at the (complex) angle of incidence for
which there is no average flow of energy across
the boundary.

(2) THE PROPAGATION VECTOR IN THE SECOND
MEDIUM

Let the boundary be the plane y—3z, and the
plane of incidence the plane x — 3, the x-axis being
directed from the first medium into the second.
Let any field component be represented by

Ee-—ki-ﬂ-iwt (1)
ki=a+ib; ky=A-+iB, (2)

with

E being a complex amplitude.
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Given k; and the constants of the second
medium, k, is determined by:

(a) The relations holding generally for non-
uniform waves?

k?=A%—B*+21A-B=w’ues+iwuos, (3)

where all letters have their usual meaning, and p
will be assumed to be the same for both media ;

(b) The boundary conditions, which give
(Snell’s law) :

k1 sin01=k2 Sil’lez, (4)

6, 8; being the (complex) angles of incidence and
refraction. Equation (4) is equivalent to the two
relations between real quantities:

aZ=A2; bZ:BZ; (5)

a, and b, can be expressed as functions of the
constants of the first medium and of 6;; it is
convenient in the following to consider them as
the independent variables in terms of which to
express the propagation vector in the second
medium.

Conditions (3) and (5) are not sufficient to
determine this vector in a unique way. In fact, if

24,.B.=2ab.> wua, (6)

the product 4,B, is negative, but, without con-
sideration of the energy flow, we cannot imme-
diately decide which of the two factors is nega-
tive. Only when A4.B, is positive, physical
reasons will immediately rule out the solution
with both quantities negative. Even in the case
of perfect dielectrics it is possible formally to
construct a second solution for the field in the
second medium, satisfying Maxwell’s equations
and the boundary conditions and corresponding
to a ‘refracted wave” moving towards the
boundary and on the same side of the normal as
the incident wave: this solution is absurd from
a physical point of view. It is an example of the
striking way in which the presence of a conduc-
tivity in both media modifies these phenomena,
that in our case a decision between the two
possible solutions is not so immediate, and that,
as we shall see, the requirement that the energy
should flow from medium 1 to medium 2 leads
to the necessity of choosing one solution within a

2 See, for instance, J. A. Stratton, reference 1, p. 341.
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certain range of the complex angle of incidence
and the other within another range, the transi-
tion occurring in a discontinuous way.

(3) THE ENERGY FLOW

(a) Electric vector Perpendicular to the Plane
of Incidence (E,)

If E, E’, E" are the complex amplitudes of the
electric vector in the incident, reflected, and
transmitted waves, respectively, the average
flow of energy perpendicular to the boundary in
the first medium is given byv:

(SzM)w=Re(3E,I1.*)
= (7% /2uw) [ | E| .67 — | E' | 2b,e%="
—2a.|E||E'| sin(2b,x+7)],
(x<0) (7)
y=arg (E'/E). (8)

with

The first two terms may be interpreted as the
energy flow associated with the incident and
reflected waves, respectively. The third term,?
which vanishes for ¢;=0, is caused by inter-
ference between the incident and reflected waves :
there is a local radiation from the maxima to the
minima of the standing waves system.

The average flow of energy perpendicular to
the boundary in the second medium is:

(S2® )= (1/2uw)e~>Uss+4z0) | B 2B,
(x>0) (9)

so that the condition that S, be continuous at
x =0 is expressed by:

b.[1—|E'/E|*]—2a.Im(E'/E)

=B.|E"/E|* (10)

This condition is automatically satisfied by the
expressions for £’ and E”, whatever the sign of
B,; however the physical conditions of our
problem impose that the energy flow be directed
from medium 1 to medium 2, therefore the
additional relation for the unique determination
of ks, is in this case

B.20. (11)

3 M. Born and E. Ladenburg, Physik Zeits. 12, 198
(1911).
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Fi6. 1. E perpendicular to the plane of incidence. Discon-
tinuity along 40.

(B) Electric Vector in the Plane of Incidence (E,;)

In this case the condition of continuity of S,
at the boundary gives, if we indicate by H, H’,
H"', the amplitudes of the magnetic vector in the
incident, reflected, and transmitted waves, re-
spectively :

axal—i—bxelw )
———([H[*+|H'|*)
o2+ e
bxo'l—a.xelw
+2———|H| |H|siny
012+ €120
A .09+ Bew
- VL
a2+ €20
with y=arg(H'/H), (12)

and the condition that the energy must flow in
the right direction is expressed by

A0+ B,we: > 0. (13)

(4) THE DISCONTINUITY FOR THE CASE E,

Writing explicitly the equations determining
A, and B, (see (3) and (5)):

B2— A= eque’—b.2+a.?, (14)
24 ,.B,=couw—2b.a,, (15)
we see that either 4, or B, is zero when
2a.b, = 7ouw, (16)
and that, when (16) is satisfied :
‘B, is zero if 0,22 esuw?+a?, (17)
A . is zero if 52K equw? a2t
In the case of small conductivities (o <Kew)
b= (ep) o singy, (18)
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o1 being the real angle of incidence, and a,—0,
so that Eq. (17) becomes

with n={(e/e1)?. (19)

Although the notion of critical angle loses all
meaning in the case of conducting media, we
shall for brevity say that, when (16) is satisfied,
B, vanishes in the region of total reflection, and
A, in the region of ordinary refraction.

If now we plot the curves (Fig. 1)

sing1 =,

(20)
(21)

and divide the plane a.v, into four regions (no
loss of generality is entailed in excluding negative
values of b,), B, vanishes on the boundary
between regions II and IV, and A, on the
boundary between I and III. The product 4,8,
is negative in regions III and IV. As B, must
always be positive (Eq. 11), and no change of
sign of either factor occurs in crossing line «
(Eq. 14), it follows that A, is positive every-
where left and negative everywhere right of line
7v. In the region of ordinary refraction the transi-
tion from positive to negative 4 , occurs continu-
ously, passing through 4 ,=0, but in the region of
total reflection 4, does not vanish on line v;
therefore it must be there discontinuous. Indeed
it jumps from the value + (b.2—a.2—epw?]* on
the left to the value —[b.2—a.?—euw? ]} on the
right—namely, the planes of equal amplitude in
the second medium, perpendicular to A, have,
on the two sides of the discontinuity, symmetrical
positions with respect to the boundary.

To the two different orientations of k, cor-
respond different expressions for the field com-
ponents, and also for these the transition from
one set of values to the other occurs discon-
tinuously when B,=0. Experimental verification
of these considerations could be better obtained
by investigation of this last phenomenon.

A negative value of 4, means that the am-
plitude increases exponentially for x— o« but
in an actual case the cross section of the beam
is not infinite, and then the amplitude decreases
in penetrating into the second medium, as follows
from A-B>0.

A difficulty arises from the fact that at the
discontinuity (B,=0) there is no average flow

b —a.?=esuw?® (line o),

2a.b,=uwsy (line v),
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of energy across the boundary, and it is not
apparent how the field in the second (dissipative)
medium can be maintained. This difficulty is
removed when a beam of finite cross section is
considered, for then edge effects allow for some
energy crossing the boundary even when B,=0.*

(5) THE DISCONTINUITY FOR THE CASE E,,
In this case the energy condition is:
(09/wex)A 4B, 2> 0.

The presence of 4, in this expression is caused by
the fact that, when the electric vector is in the
plane of incidence, the Poynting vector, for a
non-uniform wave, is not parallel to B (is not
perpendicular to the planes of equal phase). In
this case we have thus the possibility of B, being
negative, provided (S.®)x 2 0.

Taking the equality sign in (22), and elimi-
nating 4., B. from (14), (15), (22), we obtain
the pairs of values of a. and b, for which the flow
of energy across the boundary vanishes, and for
which we can consequently expect a transition
from one solution for 4, B, to the other with
reversed signs. We obtain:

(22)

g2 WEs 2

bzz"‘az2+[_ “—]azbz = %521'“’)2[1 +

-WEg 02

02

]. (23)

622602

If 03 <ew, Eq. (23), is represented by a line
such as line 8 in Fig. 2, where lines « and v are
the same as in Fig. 1. As before, the product
A.B, is negative only right of the line v; thus,
since the three hyperbolae meet at 0, the impor-
tant part of curve 8 is only that in the region of
total reflection ; the remaining part corresponds
to a spurious solution. 4., as before, vanishes
along OP, and is negative right of BOP. B,
vanishes along 40 and now becomes negative in
the region AOB. Along curve B, where the
average flow of energy across the boundary
vanishes, we must pass from one solution to the
other; there is thus a discontinuous transition
from (substituting (22) in (15)):

Bz = [(62/20)62) (2azb, — pqu)]"i,
A,=—[(we/203) (2a:b,— pwos) ]*
to the solution with opposite signs.

4J. Picht, Ann. d. Physik 3, 433 (1929); F. Noether,
Ann. d. Physik 11, 141 (1931).

(24)
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Fi1G. 2. E parallel to the plane of incidence. Dis-
continuity along BO.

Particular cases, and the relative position of
the three hyperbolae for different values of the
parameters, are easily discussed.

(6) USE OF THE REAL ANGLES OF INCIDENCE AS
INDEPENDENT PARAMETERS

An alternative formulation of the above treat-
ment may be given assuming as independent
variables, instead of a. and b,, the real angles
o1, ¥1 that the normals to the planes of equal
phase and of equal amplitude, respectively, make
with the positive x-axis in the first medium.
Formulae become then more expressive. Thus
Eq. (21) representing the condition for the
changing of sign of the product 4.,B. becomes

cotey cotyy=(a1/02) —1, (25)

and the condition for the polarizing angle, which
makes H’' =0 in the case E,; may be expressed as

cote; cotys+cotes coty; =2, (26)

@3, Y2 being the angles corresponding to ¢; and
Y, in the second medium.

An experimental arrangement for the veri-
fication of the above theory would consist of a
prism (large with respect to the wave-length)
made of the material of medium 1, and bounded
on the second face by medium 2. By varying
the angle of incidence on the first face, and the
angle of the prism, all values of ¢; and ¥, can be
obtained. Such an experiment may provide a
new method for the determination of con-
ductivities.



