
Homework 7.  ATMOS 749 Radiation Transfer.  Multiple Scattering. 

 
Figure 1.  Schematic arrangement of the cirrus cloud. 

 
The following properties apply to the cirrus cloud.  The cloud is composed of a population of ice 
crystals coming in only two sizes, small and large.  The purpose of this problem is to investigate 
the effect of small ice crystals on the transmission and reflection of sunlight by the cloud.  In 
practice, the measurement of small ice crystals is difficult, and the purpose of this problem is to 
find out if their influence is important enough to make the measurement of their numbers 
worthwhile. 
 
The ice water content,  
 
IWC = 20 mg/m3 = IWCs + IWCL = α IWC + (1 - α) IWC,  
 
where IWCs = α IWC and IWCL = (1 - α) IWC, and where 0 ≤ α ≤ 1 determines the fraction of 
total ice water content associated with small and large ice crystals.   
 



For convenience, we consider spherical particles of diameters Ds = 10 µm, and DL = 100 µm.  
The number of small crystals per unit volume, Ns is determined from the fraction of ice water 
content associated with them,  
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  , where the density of ice is ρice = 900 kg/m3, and the number of large 

crystals per unit volume is similarly determined. 
 
The scattering optical depth in the large (enough) particle limit is simply twice the projected area 
of all crystals, 
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where H = 2 km is the cloud thickness.  The asymmetry parameter for small and large crystals is 
taken to be gs = 0.7 and gL = 0.8, so that the asymmetry parameter for the combination is  
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PROBLEM 1. 
Derive equation 2. 
 
PROBLEM 2. 
Compute and plot the cirrus albedo, Rt, and the downwelling coefficient, Tt, as a function of the 
cirrus mass fraction, α, due to small ice crystals, and interpret your result.  Describe how you did 
the calculation (software used).  Your result probably will look like the following; 

 
Figure 2. Cirrus albedo (thick curve) and transmission. 



PROBLEM 3. 
In class, we considered multiple reflections between the ground and the cloud, and showed that 
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where R and T are the layer reflection coefficients obtained by considering AG=0, and are given 
in Eqs. (14) and (15) of Bohren’s 1987 article.  Eqs. (3 a,b) can also be derived by considering 
both a downwelling, and upwelling flux as a boundary condition at the lower part of the cirrus, 
as shown in Figure 1.  Using this approach, you can also show that 
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if you would like to use this form.  The definition of τ* is given in the article.  Overlay the plot in 
problem 2 with reflection and transmission calculated with the cirrus cloud to be over a ground 
having albedo AG = 0.3.  Intrepret these results.  NOTE:  Eq. 3 is general for all ω while Eq. 4 
applies only to the case where ω=1. 
 
PROBLEM 4. 
Consider now the more general problem of non-conservative scattering by the cirrus cloud, e.g. 
the single scattering albedo, ω,  of the cloud now differs from unity and the absorption 
coefficient is non-zero.  By assuming AG = 0 in Figure 1, it can be shown that the cirrus 
reflectance R, and transmittance T, are given by 
 

� 

R =
! (1" g) sinh(K # )/K

2 "!(1+ g){ }sinh(K # )/K + 2cosh(K #)

T =
2

2 "!(1+ g){ }sinh(K #) /K + 2cosh(K # )

,

where

K $ (1"!)(1"! g)[ ]
1/ 2

   , (5 a,b) 

 
and where τ is the total optical depth of the layer, τ=τsca+ τabs.  Check this result by taking the 
limit ω = 1 in Eqs. (5), and comparing with the conservative case, Eqs. (14) and (15) in Bohren’s 
article.  Also, in the limit of no scattering, ω = 0, τ = τabs, show that R=0 and that T=exp(-τabs), i.e. 
that Beer’s law applies when scattering can be ignored.  Then plot R and T for ω=0.99 and 
ω=0.90 and overlay these with the results from problem 2.  Interpret this plot. 


