Cloud Albedo (Reflectance) and Transmittance: Simple Model Cloud optical depth

$$I_t \mid \tau^* = (1-g) \tau$$

$$\tau^* = (1 - g) \ \tau$$

$$\tau = Q_{ext} \left[\frac{9\pi \ LWP^2 H}{16 \ \rho_{BulkWater}^2} \ CCN \right]^{\frac{1}{3}}$$

LWP = Cloud Water Mass / AreaQ_{ext} = Cloud droplet extinction efficiencyCCN = # cloud condensation nuclei

$$T = \frac{I_t}{I_0} = \frac{2}{2 + \tau^*}, \quad \frac{I_t^{direct}}{I_0} = \exp(-\tau), \quad R = \frac{I_r}{I_0} = \frac{\tau^*}{2 + \tau^*}$$

 n_r =1.33 λ =0.6328 D=20 um g=0.874

source: http://en.wikipedia.org/wiki/Cloud_condensation_nuclei

Homework Problem #2

- 1. Derive the relationship between τ and *CCN* given on the previous slide.
- 2. Reproduce Figure 1 on the previous slide.
- 3. Calculate the *R* and *T* coefficients in Figure 1 for water droplets with diameters of 5 microns, and 10 microns. You will have to recalculate the asymmetry parameter.
- 4. Calculate the climate sensitivity to water droplet number by calculating dR/dCCN. In words, how does the cloud albedo (reflectance) change with CCN? Assume all of the variation in R is due to CCN; hold all other parameters fixed. Explore and explain your solution as a function of total optical depth τ. Why is this solution only an approximation of dR?
- 5. Make a plot of the asymmetry parameter g and the extinction efficiency Q_{ext} for cloud droplets varying in size from 1 micron to 20 microns. Explain your results.
- 6. Reproduce the figure on the next slide using the simple model. Interpret your results. Interpret this figure.

Pat Arnott, ATMS 749 Atmospheric Radiation Transfer

Cloud Liquid Water Path, Effective Radius, And Cloud Albedo

Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCP.Preview By: Qingyuan Han; Rossow, William B.; Chou, Joyce; Welch, Ronald M.. Journal of Climate, 7/1/98, Vol. 11 Issue 7, p1516.