Homework: Compare Mie Theory for Spheres with the simple model for absorption below.

Gross Special Purpose Approximation:

$$\sigma_{\rm abs}$$
 = a[1-exp(-D_{eq}/ δ)]. Let D_{eq}=v/a. δ = λ /(4 π n_i)=skin depth.

v= $4\pi r^3/3$. a=average projected area= πr^2 for a sphere. D=2r. D_{eq}=2D/3.

Cases in a 3 matrices for fixed n_r and variable D and n_i : (calculate the percentage error of the model and Mie theory.) λ = 0.5 um.

$$n_r = 1$$
, $n_r = 1.33$, $n_r = 1.5$

D=0.01 um, 0.1 um, 1 um, 10 um.

$$n_i=0.001$$
, $n_i=0.01$, $n_i=0.1$, $n_i=1$.

Table for Homework (one for each real refractive index, 1.0, 1.333, and 1.5). Fill each empty table with a percentage error as defined below.

$\begin{array}{c} D \text{ (microns)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.01	0.1	1	10
0.001				
0.01				
0.1				
1				

$$\%Error \equiv 100 \frac{\sigma_{abs}^{Mie} - \sigma_{abs}^{Model}}{\sigma_{abs}^{Mie}} = 100 \frac{Q_{abs}^{Mie} - Q_{abs}^{Model}}{Q_{abs}^{Mie}}$$

Pat Arnott, ATMS 749 Atmospheric Radiation Transfer