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Generalized Snell-Descartes and Fresnel laws are derived for harmonic inhomogeneous plane waves that are
incident upon a static interface between two continuous absorbing dielectric media that are macroscopically
characterized by their electric and magnetic permittivities and their conductivities. A coordinate-free formal-
ism based on complex vector algebra is used to carry out all discussions. Surprisingly, the usual complex Snell-
Descartes laws for reflection and refraction and Fresnel laws for polarization are recovered only in the special
case in which the vector characterizing the direction of inhomogeneity is in the plane of incidence. In the more
general case a new deflection angle between planes of incidence and refraction has to be introduced. An ex-
periment is proposed to test this prediction. A generalized form of the TE and TM modes (with respect to the
interface), which are elliptically polarized and which are called parallel electric and parallel magnetic modes,
also emerges.

INTRODUCTION

The study of light propagation has been central to the
emergence of ancient and modern physical sciences and
has closely depended on and stimulated the development
of mathematics. Let us recall the invention of the optical
lunette and the development of the optical microscope at
the beginning of the seventeenth century, which effectively
opened new realms to human investigation. Shortly after
the invention of these revolutionary devices, Descartes
discovered the basic laws of geometric optics in 1637, and
Huygens and Newton developed the theory of colors in
1704. Most solid foundations of modern classical optics
were set up by Fresnel and Maxwell (1820 and 1864, re-
spectively). By the end of the nineteenth century the
study of light propagation in moving dielectric media cul-
minated in the establishment of Einstein's theory of spe-
cial relativity (1905). In the twentieth century our basic
knowledge has been mainly completed in the relativistic
case (e.g., see Ref. 1 and references therein). However,
many authors, among them prestigious ones, continued
to study and reveal essential details of the classical non-
relativistic laws of refraction, reflection, energy balance,
and reciprocity for plane waves that are incident upon an
interface. A partial but already extensive list of papers
is provided.2 2 3

In this paper we are concerned with a generalization of
the basic laws of refraction and reflection at a static inter-
face, that is, generalized Snell-Descartes and Fresnel
laws, which, surprisingly, we have not been able to find in
the literature. Our study deals with the reflection and
refraction of an arbitrarily polarized harmonic inhomo-
geneous plane wave (HIPW) at an interface between two
homogeneous isotropic absorbing (or amplifying) dielectric
media. Before proceeding with a description of HIPW
properties, let us review in more detail the research re-
cently carried out in this field.

Several important review articles have focused on dif-
ferent aspects of the problem of electromagnetic propaga-
tion of plane waves through an interface. We cite here
the contribution of Konig to the Handbuch der Physik
(Vol. XX) in 1928,4 papers by §antavy6 and Knittl7 on the
problem of reversibility, an article by Kizel8 with 211 ref-
erences, and a recent review by von Fragstein 9 that sum-
marized a recurrent controversy on the mixed Poynting
vector. Among the other papers that we cite are those of
Pincherle 0 and Mahan," which are very close to the pres-
ent article, a quantum treatment of evanescent waves,' a
derivation based on the equations of molecular optics,'3

and very modern analytical investigations of reciproc-
ity'4 -7 and angular momentum balance.' 8 Computer' 9

and even supercomputer investigations20 have also re-
cently included the effects that are due to diffraction in
beams with finite aperture. Finally, in a very recent
paper,2' Chen and Nelson have shown how to derive Snell-
Descartes and Fresnel laws without resorting to boundary
conditions. This is due to the fact that their new method,
called the wave-vector space method, is an asymptotic
method similar to the methods used in quantum scatter-
ing. One of the strongest motivations for many recent
studies has been the optics of thin films,2 2 which plays
an increasingly important role in modern optoelectronic
technology. 23 ,25

HIPW's are stationary solutions of Maxwell's equations
for an unbounded medium and take the following form:

E = {Eo exp[-i(k r - wot)] + c.c.},
2

(1)

where to is real and k is the complex wave vector. The
wave amplitudes may be exponentially decreasing or in-
creasing in a direction perpendicular to the direction of
propagation (in a nonabsorbing medium). As a conse-
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quence of the general formulation of our problem, we find
a generalized form of the Snell-Descartes and Fresnel
laws,24 which are derived and given below. HIPW's are
very natural and very useful in a number of problems,
such as the description of evanescent and surface waves
and also the well-known exact Sommerfeld solution2 6 to
the diffraction of a plane wave by a conducting half-plane.
HIPW's are also often used in two-dimensional boundary-
value problems.2 7 2 8 In such cases the usefulness of
HIPW's usually stems from the fact that the path of in-
tegration of a usual Fourier transform of an arbitrary
bounded distribution can be modified in the complex
plane by the use of the Cauchy theorem. The bounded
distribution can then be viewed as a linear superposition
of HIPW's.

The observability of new effects issuing from the laws
derived in this paper is dependent on the possibility of
generating experimentally bounded HIPW's that, in a re-
gion of space, would be close to idealization, like ordinary
homogeneous plane waves. This point is discussed in the
Conclusions. Generalized energy balance and reciprocity
relations for HIPW will be investigated in a subsequent
paper.2 9 In that paper arbitrary stacks of absorbing (or
amplifying) dielectric layers will be considered because of
their importance for the optics of thin films. Because
some of the general properties of HIPW's do not seem to
be well known, we present them below in detail.

HARMONIC INHOMOGENEOUS PLANE
WAVES

Maxwell's equations for the complex components of a
HIPW in a homogeneous isotropic medium, characterized
by its electric and magnetic permittivities, e and p, re-
spectively, and its conductivity or, can be written as

k Eo = k Ho = 0, (2)

k A Eo = oALoHO, (3)

k A Ho = -coeioEo, (4)

where = e - i/(aeo) is the complex dielectric con-
stant. Here, the complex vector scalar product is to be
interpreted as it would be for a real vector. All the usual
real and complex vector identities that are extensively
used throughout this paper (to keep a coordinate-free
formulation3 0 ) are presented in Appendix A. Note the
differences with respect to the frequent scalar product
a o b = a* b.

Equations (2)-(4) include the complex transversality (2)
and imply the complex perpendicularity Eo Ho = 0.
They do not, however, imply that HIPW's are purely
transverse waves or that E(r, t) is always perpendicular
to H(r, t). Substituting Eq. (3) into Eq. (4) and using
Eqs. (A4) and (2), one can find the dispersion relation

k2 _ )2 gu/Leoe = . (5)

Relation (5) suggests a relation to disentangle the complex
wave vector k:

k = 71kon, (6)

where n = \/-tg is the complex refractive index, ko = c/c,
and n is a complex unit vector satisfying n n = 1. The

vector n can be defined with the inhomogeneity parame-
ter /B and two real, perpendicular unit vectors28 :

n = nll cosh ,B + i sinhB. (7)

We restrict ,B to positive values to avoid redundancy (by
reversing the sign of both 3 and ). We point out here
that 3 is a parameter whose nature is geometric and
whose values may be imposed by boundary conditions at
infinity or at an interface (e.g., in the case of evanescent
or surface waves). Planes of constant phase are simply
defined by Re(k) r = 0, and planes of constant amplitude
are defined by Im(k) r = 0. It is well known2 830 that
planes of constant amplitude and constant phase coincide
only when the wave is homogeneous (, = 0). It is easy to
see that this case is equivalent to

k A k* = Il 2k 2 (2i sinh ,B cosh ,/)(i A ui11) = 0, (8)

which, with the help of Eq. (A3), implies that

k**Eo= k* (k A Ho)
We60

= - 1 (k* A k) Ho = 0.
coe0 e

(9)

However, the inverse is not true, because using Eqs. (A6)
and (2) we can show that

(k A k*) (Eo A Eo*) = -k Eo*12 . (10)

Similar considerations can be phrased in terms of the
magnetic field Ho because of the symmetry of Maxwell's
equations (2)-(4), but unless they are necessary for clar-
ity we shall omit such symmetric considerations. The
magnetic-field component can always be obtained from Eo
by the use of Eq. (3).

POLARIZATION PROPERTIES OF HIPW

HIPW's have the following unusual polarization properties:

1. HIPW's are not purely transverse waves: a lon-
gitudinal component Ell ill is implied by the complex
transversality condition (2). If we expand the electric
field along a right-handed coordinate system {6'1, e2 , 'il1},

(11)Eo= E0 le + E02e2 + Enl1,

the longitudinal component is equal to

Eoll = (-i tanh /B)(Eol cos ip + E0 2 sin qi), (12)

where the direction of the inhomogeneity of the wave
is specified by the angle qi such that = 6, cos q +
e2 sin . However the field vector still oscillates in a
plane and along an ellipse. Rewriting Eq. (1) as

E = Re(Eo)cos[Re(k) r - ct]

+ Im(E0 )sin[Re(k) r - cot]}exp[-Im(k) r], (13)

we see that the normal to the oscillation plane of the
electric-field vector is given by

-~E - Re(E0 ) A Im(Eo) = - Eo A Eo*. (14)
4i

Dupertuis et al.



Vol. 11, No. 3/March 1994/J. Opt. Soc. Am. A 1161

Of course the normal remains undefined for E-linearly
polarized waves precisely characterized by

A and are the amplitude and the absolute phase of the
field, respectively.

E, A Eo* = 0. (15)

This relation stems from the fact that in an E-linearly
polarized wave the electric-field derivative is always
parallel to the electric-field vector itself [E A aE/at = 0
is equivalent to Eq. (15)].

2. Interestingly enough, HIPW's cannot exhibit
simultaneous linear polarization for Eo and Ho.30 To
demonstrate this property let us examine the vectorial
product k A k* and substitute the following relation-
ship [obtained from Eqs. (A4) and (2)]:

E 2k = -E A (Eo A k). (16)

With the help of Eqs. (3) and (A7) we find that

(E0
2E0*2 )(k A k*) = (Aotk) 2(Eo A Ho) A (Eo* A Ho*)

= (po1) 2[(Ho A Ho*) Eo]Eo*

+ [(Eo A Eo*) Ho]Ho*. (17)

Thus, if E and H are simultaneously linearly polarized,
the right-hand side vanishes and the wave is necessarily
homogeneous [cf. Eq. (8)].

3. On the other hand a circularly polarized HIPW
is always simultaneously circular for E and H.30 A
circular polarization is characterized by a constant El,
which implies [using Eq. (1)] that

E02 = 0. (18)

Using Eqs. (4) and (2) it is easy to see that this is also
equivalent to

Ho = 0 X Eo A Ho = 0, (19)

where the last equivalence follows directly from Eq. (16).
To prove the statement concerning circular polarization,
it suffices to notice that Ho2

= 0' |HI = constant.
4. We have seen that, because of the longitudinal

component, the plane of oscillation of E and H is not
perpendicular to the direction of propagation ll for a
HIPW Moreover we can show that the magnetic field
H is not in general perpendicular to the electric field
unless one polarization is linear:

E H = 2 Re(Eo Ho*) (n - *n*) (Eo A Eo*).
2

(20)

Equation (20) also shows that the fields are always per-
pendicular (whatever the polarization) in the usual de-
generate case, in which the wave is homogeneous and
the medium is nonabsorbing.

5. Finally, we characterize the polarization of a
HIPW with Jones's parameterization3":

Eo, = A exp(i5)(cos p cos e - i sin p sin ), (21)

E02 = A exp(i8)(sin p cos - i cos cp sin s). (22)

Here p is the azimuth and is the ellipticity angle of the
field with respect to the direct reference frame e1, 2, tll.

The complex Poynting vector for HIPW's, the Poynting
theorem, and the mixed Poynting vector will be discussed
in a subsequent paper on energy balance and reciprocity
relations.2 9

REFLECTION AND REFRACTION OF A HIPW
AT AN INTERFACE

To study the transmission of an arbitrary HIPW that is
incident upon an interface between two homogeneous
isotropic media, we now carefully complete the parame-
terization. We suppose that the interface includes the
origin, its direction being specified by the real unit vector
s normal to the surface. The following notations are
adopted for each wave: the incident wave is denoted by
the subscript i, the reflected wave is denoted by the sub-
script r, and the transmitted wave is denoted by the sub-
script t. We use a polar parameterization for the complex
refractive indices of the two media ij = Ijljexp(i7qj), where
j = i, r, t. To characterize the respective orientations of
the waves and the interface we must introduce the angles
of incidence, reflection, and refraction defined by

cos e = s * h11j, sin Oj = j ( A hlAj), (23)

where j = i, r, t. Let us note that this definition finally
fixes the direction of the real unit vector ei [as well as the
respective right-handed coordinate system of the incident
wave {e1ie 26 hlil; see Eq. (11)]. eii is the direction per-
pendicular to the plane of incidence, and we also choose
61i = eir. This choice is important for the description of
inhomogeneity direction and the polarization. To fix
the respective orientation of ejt [and the respective right-
handed coordinate system of the refracted wave
{&t, 2t, z2t}; see Eq. (11)], a preliminary study has shown
that we must introduce a new angle A defined by

cos A = jij * et, sin A = (i A jit). (24)

The appearance of this angle is new in the context of this
problem, and we call it the deflection angle because it is
the angle between the planes of incidence and refraction.
In Fig. 1 we give a pictorial representation of the angles
involved.

KINEMATICS: GENERALIZED
SNELL-DESCARTES LAWS

The phase-matching condition for the waves at the inter-
face requires that

ki* rl = kr rl = kt* rl, (25)

where rll is such that rll = - A ( A r). Substituting in
Eq. (25) the complex decomposition of k in perpendicular
and parallel components k = ( k) - A ( A k) and
using Eq. (A3), we obtain

(s A ki) ( A r) = ( A kr) ( A rl)

= ( A k) (s A r). (26)
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The generalized Snell-Descartes laws shown in Eqs. (29)-
(31) for reflection and in Eqs. (32)-(35) for refraction
differ considerably from the well-known complex Snell-
Descartes laws:

sin Or = sin Oi,

hi sin Ot = hi sin Oi,

0, = 0 - i,B8, j = i, r, t.

These complex laws are recovered only in the special case

A = 2 = 'r = -2 2

In vectorial form this condition may also be expressed as

§i *(nAn*) = 0 or (n 11A1no) = 0.
Fig. 1. Coordinate systems, vectors, and angles introduced in the
text to describe the incident, reflected, and transmitted HIPW's
at the interface. A figurative exponential tail has been drawn
along no to represent the HIPW Although not well represented,
fij is always perpendicular to hl2 j and makes an angle qrj with e1j
(j = i,r,t).

Because Eq. (26) is valid for any r we see that the complex
in-plane components of k must be conserved30 3 2:

&Aki = iAkr = Akt. (27)

Together with the dispersion relation (5) Eq. (27) also
implies for the normal component of the reflected wave
vector,

(28)

as expected.
The apparent simplicity of Eq. (27) hides a generaliza-

tion of the complex Snell-Descartes laws. To show this
generalization we project these equations on the in-plane
basis {lii, § A li} and extensively use the vector identities
of Appendix A and the parameterization of the HIPW's
detailed above. After lengthy calculations we find for
reflection

The simplified form of the Snell-Descartes laws in this
case is due to the high symmetry resulting from the invari-
ance under lateral spatial translations. Another special
case would be given by § * no = 0, but apparently it does
not lead to great simplifications.

A number of other consequences and special cases of the
general laws (29)-(31) and (32)-(35) are worth discussing:

(a) We note for the first time the appearance of the
deflection angle A, which is the angle between the planes
of incidence and refraction on each side of the interface.

(b) The reflection laws (29)-(31) determine uniquely
the alternative reflection laws

The proof is as follows: We can substitute Eqs. (29) and
(31) into Eq. (30) by the use of trigonometric and hy-
perbolic sum rules. Solving the resulting second-order
equation by division with the trivial solution sinh2 Pr =
sinh2 fi yields

cosh Pr sin 0, = cosh i3i sin 0i,

sinh fPr sin qir cos Or sinh f3i sin i cos Oi,

sinh Pr cos Oir sinh 13i cos h/i.

For refraction we find

Ifitlcosh fPt sin O cos A

= Ihil[cos(7mi - iq,)cosh ,3i sin Oi

+ sin(71i - 71,)sinh f3i sin i cos Oil,

Iitlcosh 3t sin St sin A

= -iilsin(mq - q,)sinh f3i cos i/i,

nfti(sinh P,3)[cos At sin A + sin qi/ cos St cos A]

= IJi[-sin(,q - q,)cosh fBi sin 0i

+ cos(,qi - -q,)sinh p3i sin hi cos Oil,

Ihti(sinh Pt)(cos t cos A - sin /t cos sin A)

= Iilcos(-q - qt)sinh Pi cos ipn.

(29)

(30)
sinh2 Pr = sinh2 3i sin2 0, cOs2 ki/ - cOs2 OH. (44)

Because all quantities are real this equation implies that
(31) fBr < f3i. But, because Eqs. (29)-(31) are symmetric

with respect to the interchange i -> r, a symmetric rela-
tion PBi - Pr also holds. Therefore, Pr is equal to Pi,
which implies Eqs. (41)-(43). A last remark is that the
unusual law Or = r - Oi (instead of Or = -0i) comes from
our definition (23).

(32) (c) We investigate the conditions for the occurrence of
the unusual case A # 0. From Eq. (33) we deduce that
this unusual case occurs only when the right-hand side of

(33) Eq. (33) is nonzero. Therefore, for purely inhomogeneous
waves, when Eq. (39) fails, and when the arguments of the
complex refractive indices of the two media are different,
the deflection angle does not vanish.

(34) (d) Finally, Eqs. (34) and (35) give us a hint about the
possible ways to generate purely inhomogeneous waves
from a homogeneous incident wave. If Pi = 0, we can

(35) find with a little algebra that

e1 i

(36)

(37)

(38)

(39)

(40)

§kr = - *ki, O = 7t- Oi 

Or = h0i ,

f6r = Pi .

(41)

(42)

(43)
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!ritlsinh Pt sin Alt cos 0, = -iisin(j - -t)(sin i cos A).

(45)

This means that generally fAt = 0 only if (i - t) 0.
The special cases are when the transmitted wave is eva-
nescent (t = /2) or when Apt = 0 or A = /2.

Numerically the direct solution of the generalized laws
(32)-(35) in terms of the parameters of the transmitted
wave involves finding the unique solution of four simulta-
neous nonlinear equations. However, the multivaluedness
of the inverse trigonometric functions and the many differ-
ent conditions for signs and bounds of the unknown vari-
ables makes direct solution complicated. We preferred to
obtain the transmitted parameters by disentangling the
transmitted wave vector, which can be simply calculated
using the dispersion relation (5) and the conservation of
the tangential components (27). The deflection angle can
then be obtained by forming the scalar products involved
in its definition (24). We checked that the generalized
laws (32)-(35) were satisfied by this numerical solution.

DYNAMICS: GENERALIZED
POLARIZATIONS AND GENERALIZED
FRESNEL LAWS

At the interface the integral form of Maxwell's equations
allows us to derive the continuity or discontinuity equa-
tions for the fields between the two media:

and satisfy independently Maxwell's equations (2)-(4) and
are not coupled by the interface. We can also write the
complex amplitudes as

EPE q Eo, HPE = q2* Ho, (54)

(55)EPM = q2 Eo, HPM = ql Ho.

Because these generalized modes possess a longitudinal
component we cannot meaningfully use the designation
generalized TE modes. We prefer to call them parallel
electric (PE) modes because the polarization ellipse of the
electric field EPE = EpEql always remain parallel to
the interface plane ( EPE = 0). Similar considerations
hold of course for the parallel magnetic (PM) modes.
Using Jones's parameterization we can easily see that
these modes are in general elliptically polarized, e.g.,

EPE = APE exp(i 8 pE)[epE-i tanh ,3)(hi . epE)lhl], (56)

where

j + XPEe2

(1 + IXPE )'

i tanh 63 cos 0 cos if-
XPE = sin 0 - i tanh ,B cos 0 sin i

(57)

(58)

Solving the boundary conditions (46)-(49) we derive the
generalized Fresnel laws for PE-polarized HIPW's:

A Ei + A Er-§ AEt=0,

gig (Hi + Hr) - ,1§ (H,) = 0,
§ A Hi + § A Hr - A H, = 0,

Ei§- (Ei + Er) - Et§ (E) = 2

(46)

(47)

(48)

(49)

EPEr = rPE EPEi with rPE ( -
. ki/i + s k/.t

(59)

EPEt tPEEpEi with tPE = 2
E - ki/.i + s ktl, t

(60)

In the derivation of Eqs. (46)-(49) we used the fact that
the surface current density vanishes if the quantities e,
,u, and of remain constant infinitely close to the inter-
face.3 2 As a consequence, the parallel component of H
remains continuous. On the other hand the surface
charge density X, which was retained in Eq. (49), does not
vanish whenever

Eijot - Etoli 0. (50)

This is easily checked by examining the equation for the
conservation of charge and Ohm's law on each side of the
interface (see, for example, Ref. 32, p. 555).

Generalized TE and TM polarizations with respect to
the interface can be defined only by use of complex orthog-
onal unit vectors,

gAn
q, =(§ An)2]112' q2= n A q,

satisfying q 2
= 1, q q2 = 0 (but q q2 * 5

and ql = (q2 A §)/(§ n). The projections (EPE,EPM)
(HpM,HPE) of the electric and magnetic fields Eo anc
along (q1, q2), respectively, are defined by

EPE = EpEql, HPE = HpEq 2 ,

EPM - EpMq2 , HPM = HpMql

For PM-polarized HIPW's,

HPMr = rpM Hpmi with
9 § ki/i - § k/etA

rPM \ .ki/ei + §. ktlgt

(61)

Hpmt = tHpmi with tpm = 29 + ki/g
(§. k/e + k,/et)

(62)

We have kept these laws in condensed form because devel-
oping the complex scalar products in terms of the parame-
terization is cumbersome. Because most often one deals
with electric fields,2 8 we note here that Eq. (61) holds also
for EPM because EPM = - /Woeog)HpM and that Eq. (62) can
be replaced by the following nonsymmetrical expression:

(51)
Epmt = 2ht( ki) 1

fii(etlgi)(g ki) + hi(9 * t)Epi
6 0),

(63)

and From Eq. (49) the surface charge density at the interface
I Ho can be evaluated. We note that PE waves do not generate

a surface charge density. We have checked that the ex-
(52) pressions of Fresnel coefficients for PM waves rpM and tpM

were compatible with the continuity equation for charges
(53) at the interface cited above [relation (50)].
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Linearly polarized PE homogeneous plane wave.

1LoonJeous wv .

plane miof the paer
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P r .PIw~~~~~~~Elpi oa

Air

diecion out
te page.

Azdo.

The nomial to this interface is
tilted -68 degrees (W22) out

Rutile TiO2 of the plane of the page.

ITO
Fig. 2. Proposed experiment to test the generalized Snell-
Descartes and Fresnel laws in an ITO wedge on a rutile slab. A
homogeneous plane wave is incident upon the rutile slab, coupled
onto the rutile-ITO interface, where the HIPW is generated.
The orientation of the ITO-air final interface is such that
i/ # i/2; therefore only generalized laws are valid for that inter-
face. Note that the different angles and parameters are indicated
in Table 1 and are not to scale in this figure.

To conclude this section let us mention first that the
transmission of an arbitrarily polarized wave can be cal-

culated using the principle of linear superposition in PE
and PM modes with respect to this interface. Second, the
Fresnel coefficients rE, tPE, rpM, tM given by Eqs. (59)-
(62), respectively, also play an important role for the

formulation of energy balance and reciprocity relations,
which are extensively discussed in a subsequent paper.2 9

PROPOSAL FOR AN EXPERIMENT

An experimental verification of the generalized laws can
be made under various circumstances. In Fig. 2 we pro-
pose a case that could be realized in practice to generate a

HIPW and demonstrate a deflection. Equation (33) indi-
cates that such a deflection occurs only under restricted
conditions, that is, when the right-hand side of Eq. (33) is
nonzero [e.g., at an interface between an absorbing and a
transparent medium, when Eq. (39) fails]. Therefore we
might expect to observe a deflection at the second inter-
face of an absorbing wedge for particular orientations of
an incoming ordinary plane wave. The implicit assump-
tion here is that the lateral spatial extent of the incoming
beam is so small that a superposition of the multiply re-
flected waves in the wedge at the second interface is
avoided. In Fig. 2 the different media are air, rutile
(TiO2), indium tin oxide (ITO:S,0 2 /In 2O3 ), and air, which
have the following refractive indices at a wavelength of
633 nm: 1, 2.6, 2, and 1, respectively. Only the ITO
wedge is slightly absorbing; its absorption coefficient a =
-2ko Im(h) is equal to 0.214 m-'. The role of the rutile-
ITO interface is to create the HIPW, and the role of the
ITO-air interface (which is tilted with respect to the nor-
mal out of the plane of the page) is to show the peculiari-
ties of the generalized laws. The calculated angles (angles
of incidence, reflection, refraction, deflection, etc.) are dis-
played in Table 1. Near normal incidence the deflection
angle A has an appreciable magnitude of 270, and the wave
has a slightly elliptical polarization.

CONCLUSIONS

We have derived a generalization of complex Snell-
Descartes and Fresnel laws for the most general kind of
plane wave, that is, the HIPW The polarization proper-
ties of HIPW's and the form of generalized PE and PM
modes have been determined. The theory does not in-
clude anisotropic materials (birefringence) or partial po-
larization states. It includes arbitrary values of all the
wave quantities specified by the parameterization angles
oi, Or, Ot, aii, air, Oit, A; the plane-wave inhomogeneities P3i,
Pr, b 3t; and homogeneous isotropic dissipative media, char-
acterized by the complex refractive indices nii, h,. The
theory can describe numerous known phenomena, such as
total internal reflection, polarization by reflection (Brew-
ster), metallic-type reflection, refraction of metals, the
skin effect, and surface waves at the interface. New phe-
nomena are predicted by the present theory, which cannot
be described by standard reflection and refraction laws,
when the incident wave includes an inhomogeneity in the
transverse direction [when Eq. (39) fails]. In particular a
deflection of the HIPW by the interface [characterized by
the deflection angle A, Eqs. (24)] is predicted when the
condition (50) is satisfied. These effects should be observ-
able in the limited region of space where edge diffraction

Table 1. Angles and Parameters of the HIPW and of Each of the Layers in the Proposed Experiment'

Layer n a (QfM') 0i i 3 0 e A

Rutile 2.6 0 47 90 0 0 0 0
ITO with respect

to first interface 2.0 0.214 71.92 -90 1.57 x 10-2 0 0 0
ITO with respect

to second interface 2.0 0.214 0.01 22 1.57 x 10-2 0 0 0
Air 1.0 0 1.86x 10-2 -5.16 3.13 x 10-2 27.16 2.4 X 10-3 27.16

'The symbols are defined in the text, the material parameters corespond to a wavelength of 633 nm, and the angles are expressed in degrees.
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effects that are due to the finite lateral spatial extension
of the incoming beam are negligible. To the best of our
knowledge, these new phenomena do not seem to have
been noticed before,27 2 '33 because in all usual problems
starting from ordinary homogeneous plane waves that
are incident upon an arbitrary set of parallel interfaces
Eq. (39) remains valid. An experiment has been proposed
to demonstrate the generalized laws and the deflection.
Finally, it should also be mentioned that once a HIPW is
generated the standard complex Snell-Descartes and
Fresnel laws fail also at an interface between pure dielec-
trics even if the wave is not deflected. It is not yet clear
whether such effects could be usefully exploited in optical
devices. Thin-film technology might one day face layers
with nonparallel interfaces, where the phenomena dis-
cussed here might become important. Further generaliza-
tions for static or moving interfaces between birefringent
or optically active media should be possible in the classi-
cal30 and the relativistic cases.'

APPENDIX A. COMPLEX VECTORIAL
ALGEBRA

Because complex vector identities are not usually well
known and play an important role in this series of papers,
we present the main results for the two kinds of scalar
product:

Let a, b, c, d be four arbitrary complex vectors. In this
paper the scalar product and the vectorial product are
defined as

3

a b = aibi = b a, (Al)
i=1

3

a A b = 6fj,abk = -b A a, (A2)
i=1

respectively, where Eijk is the fully antisymmetric tensor of
rank two. In this case all the usual vector identities that
hold for real vectors are valid:

a (b A c) = c (a A b) = b (c A a), (A3)

a A (b A c) = (a c)b - (a b)c, (A4)

aA(bAc) +bA(cAa) + cA(aAb) =0, (A5)

(a A b) (c A d) = (c a)(d b) - (d a)(c b), (A6)

(a A b) A (c A d) = [(c A d) a]b - [(c A d) b]a

= [(b A d) a]c - [(b Ac) * a]d.
(A7)

A last very useful identity allows us to perform the decom-
position of an arbitrary real or complex vector x along
three noncollinear vectors:

[(b A c) a]x = [(b A c) x]a + [(c A a) x]b

+ [(a A b) x]c. (A8)

On the other hand the scalar product for complex vec-
tors is sometimes defined as

a o b = > ai*bi = a* b
i=l

because the real norm of a complex vector is then properly
given by the scalar product of the vector with itself. This
definition is somewhat awkward because most identities
(A3)-(A8) do not remain valid. A simple way that we
found to solve this problem is to redefine the vectorial
product:

0 30

a A b = , e,kaj*bk* = a* A b* = -b A a.
i-l

(A10)

The identities (A3)-(A8) can now be used. It must, how-
ever, be emphasized that the order of the arguments in
Eqs. (A3)-(A8) has been carefully chosen and must now be
absolutely respected because the scalar product is not
commutative anymore: a b # b o a.
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