2 RC Circuits in Time Domain

2.0.1 Capacitors

Capacitors typically consist of two electrodes separated by a non-conducting gap. The
quantitiy capacitance C' is related to the charge on the electrodes (+@ on one and —@Q on
the other) and the voltage difference across the capacitor by

C=Q/Vc

Capacitance is a purely geometric quantity. For example, for two planar parallel electrodes
each of area A and separated by a vacuum gap d, the capacitance is (ignoring fringe fields)
C = eyA/d, where ¢, is the permittivity of vacuum. If a dielectric having dielectric constant
k is placed in the gap, then ¢y) — reg = €. The SI unit of capacitance is the Farad. Typical
laboratory capacitors range from ~ 1pF to ~ 1uF.

For DC voltages, no current passes through a capacitor. It “blocks DC”. When a time
varying potential is applied, we can differentiate our defining expression above to get

1=c=< (1)

for the current passing through the capacitor.

2.0.2 A Basic RC Circuit

Consider the basic RC circuit in Fig. 7. We will start by assuming that V;, is a DC voltage
source (e.g. a battery) and the time variation is introduced by the closing of a switch at
time ¢ = 0. We wish to solve for V,,; as a function of time.

O O\ g ® O

Figure 7: RC circuit — integrator.

Applying Ohm’s Law across R gives Vi, — Vo = I R. The same current I passes through
the capacitor according to I = C'(dV/dt). Substituting and rearranging gives (let V = Vo =

Fou: v o1 1
@ "re' = RC" @

The homogeneous solution is V = Ae #7C where A is a constant, and a particular solution
is V' = Vi,. The initial condition V(0) = 0 determines A, and we find the solution

V(t) = Vi [1 — 7] (3)
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This is the usual capacitor “charge up” solution.

Similarly, a capacitor with a voltage V; across it which is discharged through a resistor
to ground starting at ¢ = 0 (for example by closing a switch) can in similar fashion be found
to obey

V(t) _ ‘/,'€_t/RC
2.0.3 The “RC Time”

In both cases above, the rate of charge/discharge is determined by the product RC' which
has the dimensions of time. This can be measured in the lab as the time during charge-up or
discharge that the voltage comes to within 1/e of its asymptotic value. So in our charge-up
example, Equation 3, this would correspond to the time required for V,,; to rise from zero
to 63% of Vi,.

2.0.4 RC Integrator

From Equation 2, we see that if V,,; < Vi, then the solution to our RC circuit becomes

Vi = Rl—c [ Vialt)et (4)

Note that in this case Vi, can be any function of time. Also note from our solution Eqn. 3
that the limit V,,; <« Vi, corresponds roughly to t < RC. Within this approximation, we
see clearly from Eqn. 4 why the circuit above is sometimes called an “integrator”.

2.0.5 RC Differentiator

Let’s rearrange our RC' circuit as shown in Fig. 8.
N C
O O I I O
Vin D R Vout

Figure 8: RC circuit — differentiator.

Applying Kirchoff’s second Law, we have Vi, = Vi + Vi, where we identify Vi = V4.
By Ohm’s Law, Vg = IR, where I = C'(dV/dt) by Eqn. 1. Putting this together gives
d
V:)u = RC— V;n - ‘/ou
! it )

In the limit Vi, > V,, we have a differentiator:

dVin

dt

V:)ut = RC



By a similar analysis to that of Section 2.0.4, we would see the limit of validity is the opposite
of the integrator, i.e. t > RC.

3 Circuit Analysis in Frequency Domain

We now need to turn to the analysis of passive circuits (involving EMF's, resistors, capaci-
tors, and inductors) in frequency domain. Using the technique of the complex impedance,
we will be able to analyze time-dependent circuits algebraically, rather than by solving dif-
ferential equations. We will start by reviewing complex algebra and setting some notational
conventions. It will probably not be particularly useful to use the text for this discussion,
and it could lead to more confusion. Skimming the text and noting results might be useful.

3.1 Complex Algebra and Notation

Let V be the complex representation of V. Then we can write
V=R(V)+13(V) =Ve? =V [cosf + 1sin 6]

where 1 = y/—1. V is the (real) amplitude:
~ 9 9 1/2
V = Li*—[?R(i) %(L)}

where * denotes complex conjugation. The operation of determining the amplitude of a
complex quantity is called taking the modulus. The phase 6 is

0 = tan™" [S(V)/R(V)]

So for a numerical example, let a voltage have a real part of 5 volts and an imaginary part
of 3 volts. Then V =5 + 31 = /3¢t tan~'(3/5)

Note that we write the amplitude of V, formed by taking its modulus, simply as V. It is
often written |V|. We will also use this notation if there might be confusion in some context.
Since the amplitude will in general be frequency dependent, it will also be written as V' (w).
We will most often be interested in results expressed as amplitudes, although we will also
look at the phase.

3.2 Complex Voltage and Current

We want to develop a general technique applicable to any time-dependent signal. Our tech-
nique is essentially that of the Fourier transform, although we will not need to actually invoke
that formalism. We will analyze our circuits using a single Fourier frequency component,
w = 27 f, using for example an AC voltage given by V (t) = Vj cos(wt + ¢) where ¢ is some
additional phase to make our AC voltage function completely general. The absolute phase of
an AC signal is always arbitrary, only phase differences are important, so we will often drop
¢ from the specification of an input voltage. Analyzing only cosine functions may seem like
a cheat, but this is in fact completely general, of course, as we can add (or integrate) over a
range of frequencies if need be to recover some particular waveform in the time domain.

It turns out when working with AC currents and voltages that it is much easier to do
the algebra using complex numbers. Let our complex Fourier components of voltage and

9



current for a specific w be written as V = Vpe!@+91) and [ = Ioe"@+92)  If we want to
know what the actual voltage or current at some point in a circuit might be, we only need to
take the real part of this complex function: V() = R(V) = Vj cos(wt + ¢,). Note that our
book uses a couple of engineering conventions which most physicists find terribly confusing.
First, they use 7 = v/—1 instead of 2 = v/—1. The argument is that ¢ gets confused with the
current, although for physicists, 7 is just as confusing. We will stick with + = v/—1. Second,
the complex voltage function V' defined in the book drops a term of ¢*!. This makes the
notation slightly more compact, but you have to put this term back in when converting to a
real voltage which makes this really kludgy. If you ever find the book referring to a complex
AC voltage or current and there seems to be a factor of ! missing, it probably is. We will
try to always include it in our discussions.

When first presented, this complex voltage and current notation always seems like a
huge and unnecessary complication. As we will shortly see, however, it makes for an almost
magical simplification in the analysis of linear circuits composed of inductors, resistors, and
capacitors. If you feel uncomfortable with complex numbers, it would be well worth spending
a little time reviewing the subject.

3.3 Ohm’s Law Generalized

Now, we wish to generalize Ohm’s Law by replacing V = IR by V = IZ, where Z is the
(complex) impedance of a circuit element. Let’s see if this can work. We already know that
a resistor R takes this form. What about capacitors and inductors?

Our expression for the current through a capacitor, I = C(dV/dt) becomes

I= CiVe’(WtH’l) = wCV
dt
Thus, we have an expression of the form V = IZ for the impedance of a capacitor, Zc, if
we make the identification Z¢ = 1/(wC).
For an inductor of self-inductance L, the voltage drop across the inductor is given by
Lenz’s Law: V = L(dI/dt). (Note that the voltage drop has the opposite sign of the induced
EMF, which is usually how Lenz’s Law is expressed.) Our complex generalization leads to

. d - d .
V=L—1I=L—Ie“") =Ll
dt dt
So again the form of Ohm’s Law is satisfied if we make the identification ~Z L, = wl.
To summarize our results, Ohm’s Law in the complex form V = IZ can be used to

analyze circuits which include resistors, capacitors, and inductors if we use the following:

e resistor of resistance R: Zp = R
e capacitor of capacitance C: Z¢ = 1/(wC) = —1/(wC)
e inductor of self-inductance L: Z; = wlL

A word on nomenclature. Impedance is the complex generalization of resistance which
is used in the complex representation of Ohm’s law. The real component of a complex
impedance is the resistance, while the imaginary part is called the reactance. Inductance and
capacitance are two different types of reactance. Even with all of this complication, resistors,
capacitors, and inductors are all linear elements which can only change the amplitude and
phase of a single Fourier component.
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3.3.1 Capacitor Impedance

If we wanted to know the current flowing through a capacitor driven by an AC voltage,
we can now simply use our generalized, complex Ohm’s law to give us an answer. Since
I =V/Z and Z¢ = 1/(wC), we have I = wCV. To get the real current, we need to take
the real part of the right-hand side:

I(t) =% [sz’Voe“"t} = R [wCV(coswt + 1sinwt)] = —wC'Vj sin wt.

So for V(t) = Vhcoswt we end up with I(t) = —wCVjsinwt, which leads the voltage by a
phase of 90 degrees and increases by the frequency-dependent factor of wC. A very good
way to intuitively think about capacitors, in fact, is as a device with a frequency-dependent
impedance. High frequency components pass through a capacitor, while low frequency com-
ponents are blocked.

3.3.2 Combining Impedances

It is significant to point out that because the algebraic form of Ohm’s Law is preserved,
impedances follow the same rules for combination in series and parallel as we obtained for
resistors previously. So, for example, two capacitors in parallel would have an equivalent
impedance given by 1/Z, = 1/Z, +1/Z,. Using our definition Z¢ = —1/wC, we then recover
the familiar expression C, = C} + Cy. So we have for any two impedances in series (clearly
generalizing to more than two):

Zy= 2+ Zs

And for two impedances in parallel:

. . . Y
b=l vl =

And, accordingly, our result for a voltage divider generalizes (see Fig. 9) to

- - 7
‘/out = ‘/in [%] (5)
Z1+ 2y
7 1
zl
Vin
z, Voout

o P

Figure 9: The voltage divider generalized.

Now we are ready to apply this technique to some examples.
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3.4 A High-Pass RC Filter

The configuration we wish to analyze is shown in Fig. 10. Note that it is the same as Fig. 7
of the notes. However, this time we apply a voltage which is sinusoidal: f/in(t) = Vj,ewtte),
As an example of another common variation in notation, the figure indicates that the input
is sinusoidal (“AC”) by using the symbol shown for the input. Note also that the input and
output voltages are represented in the figure only by their amplitudes Vi, and V.., which
also is common. This is fine, since the method we are using to analyze the circuit (complex
impedances) shouldn’t necessarily enter into how we describe the physical circuit.

||
| || ©

Vin @ R Vout

Figure 10: A high-pass filter.

We see that we have a generalized voltage divider of the form discussed in the previous
section. Therefore, from Eqn. 5 we can write down the result if we substitute Z; = Zo =

—1/(wC) and Z, = Zp = R:
o[t

R —1/(w(C)
At this point our result is general, and includes both amplitude and phase information.
Often, we are only interested in amplitudes. We can divide by Vi, on both sides and find
the amplitude of this ratio (by multiplying by the complex conjugate then taking the square
root). The result is often referred to as the transfer function of the circuit, which we can
designate by T'(w). i
_ |V:)ut| ‘/out WRC
Tw) = —=—= - 211/2 (6)
[Vinl Vi 14 (wRC)?]

Examine the behavior of this function. Its maximum value is one and minimum is
zero. You should convince yourself that this circuit attenuates low frequencies and “passes”
(transmits with little attenuation) high frequencies, hence the term high-pass filter. The
cutoff between high and low frequencies is conventionally described as the frequency at
which the transfer function is 1/4/2. This is approximately equal to an attenuation of 3
decibels, which is a description often used in engineering (see below). From Eqn. 6 we see
that 7' = 1/4/2 occurs at a frequency

27 faan = waap = 1/(RC) (7)

The decibel scale works as follows: db= 20 log;,(A;/As), where A; and A, represent any
real quantity, but usually are amplitudes. So a ratio of 10 corresponds to 20 db, a ratio of 2
corresponds to 6 db, v/2 is approximately 3 db, etc.
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3.5 A Low-Pass RC Filter

An analogy with the analysis above, we can analyze a low-pass filter, as shown in Fig. 11.

R

Vin - C Vout

O o ° O

Figure 11: A low-pass filter.

You should find the following result for the transfer function:

|‘Z)ut| _ ‘/out _ ]-
Vil Vi [1+ (wRC)?M?

T(w)

(8)

You should verify that this indeed exhibits “low pass” behavior. And that the 3 db
frequency is the same as we found for the high-pass filter:

27 faap, = waap = 1/(RC) 9)

We note that the two circuits above are equivalent to the circuits we called “differentiator”
and “integrator” in Section 2. However, the concept of high-pass and low-pass filters is much
more general, as it does not rely on an approximation.

An aside. One can compare our results for the RC' circuit using the complex impedance
technique with what one would obtain by starting with the differential equation (in time) for
an RC circuit we obtained in Section 2, taking the Fourier transform of that equation, then
solving (algebraically) for the transform of V. It should be the same as our result for the
amplitude V,; using impedances. After all, that is what the impedance technique is doing:
transforming our time-domain formuation to one in frequency domain, which, because of the
possibility of analysis using a single Fourier frequency component, is particularly simple.

3.6 Bode Plots

Equation 8 describes the frequency-dependent attenuation of a low-pass filter. A common
way to visualize this information is by plotting the transfer function (in db) versus the
frequency on a log scale. The resulting log-log plot, called a Bode plot, is shown in Figure 3.6.

The main features of a low-pass filter are clearly visible. At w = wsgqp, = 1/(RC), the
attenuation of this circuit it 3 db, or 1/y/2. At frequencies well below the 3 db point,
the attenuation is minimal, while at frequencies above the 3 db point, the attenuation falls
linearly (on a log-log plot) at a rate of 20 db per decade.
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Figure 12: Bode plot of a low-pass filter.

3.7 Frequency Domain Analysis (contd.)

Before we look at some more examples using our technique of complex impedance, let’s look
at some related general concepts.

3.7.1 Reactance

First, just a redefintion of what we already have learned. The term reactance is often used
in place of impedance for capacitors and inductors. Reviewing our definitions of impedances
from Section 3.3 we define the reactance of a capacitor X¢ to just be equal to its impedance:
X¢ = —1/(w0). Similarly, for an inductor X, = wL. This is the notation used in the text.

However, an alternative but common useage is to define the reactances as real quantities.
This is done simply by dropping the 2 from the definitions above. The various reactances
present in a circuit can by combined to form a single quantity X, which is then equal to the
imaginary part of the impedance. So, for example a circuit with R, L, and C in series would
have total impedance

~ 1

Z:R+2X:R+Z(XL+XC):R+z(wL—E)

A circuit which is “reactive” is one for which X is non-negligible compared with R.

3.7.2 General Solution

As stated before, our technique involves solving for a single Fourier frequency component
such as V = V') You may wonder how our results generalize to other frequencies and
to input waveforms other than pure sine waves. The answer in words is that we Fourier
decompose the input and then use these decomposition amplitudes to weight the output we
found for a single frequency, V. We can formalize this within the context of the Fourier
transform, whch will also allow us to see how our time-domain differential equation became
transformed to an algebraic equation in frequency domain.
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Consider the example of the RC low-pass filter, or integrator, circuit of Fig. 7. We
obtained the differential equation given by Eq. 2. We wish to take the Fourier transform of
this equation. Define the Fourier transform of V() as

— V%_W /_ :o dte=""V (1) (10)

Recall that F{dV/dt} = wF{V}. Therefore our differential equation becomes

v(w) = F{V )}

wo(w) +v(w)/(RC) = F{Vi(t)}/(RC) (11)
Solving for v(w) gives FUL)
vlw) = 1+ ZIZJRC (12)

The general solution is then the real part of the inverse Fourier transform:

V() = F o)} = o= [ de o) (13)

In the specific case we have considered so far of a single Fourier component of frequency
w, i.e. Vi = Vie®t, then F{Viu(t)} = v210(w — '), and we recover our previous result for

the transfer functlon. |

1+ wRC

For an arbitrary functional form for Vj,(¢), one could use Eqns. 12 and 13. Note that
one would go through the same steps if Vi, (t) were written as a Fourier series rather than
a Fourier integral. Note also that the procedure carried out to give Eqn. 11 is formally
equivalent to our use of the complex impedances: In both cases the differential equation is
converted to an algebraic equation.

T=V/Vu= (14)

3.8 Phase Shift

We now need to discuss finding the phase ¢ of our solution. To do this, we proceed as previ-
ously, for example like the high-pass filter, but this time we preserve the phase information
by not taking the modulus of Viut. The input to a circuit has the form Vi, = Vi gHwiter)
and the output Vit = Vour€@92) - We are usually only interested in the phase dlfference
¢o — ¢1 between input and output, so, for convenience, we can choose ¢; = 0 and set the
phase shift to be ¢ = ¢. Physically, we must choose the real or imaginary part of these
expressions. Conventionally, the real part is used. So we have:

Vin(t) = §R(f/m) = Vin(w) cos(wt)
and B
V:)ut(t> = §R(‘/out) = ‘/out<W> COS(Wt + ¢)

Let’s return to our example of the high-pass filter to see how to calculate the phase shift.
We rewrite the expression from Section 3.4 and then multiply numerator and denominator
by the complex conjugate of the denominator:

5 L _ gt 1+1/(wRC)
Vour = Vin [R—z/wm] Ve T RO
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By recalling the general form a + 1b = v/a2 + b2 e, where ¢ = tan~!(b/a), we can write
1 = LV
+1/(wRC) = ll + (@> ] e
allowing us to read off the phase shift:
6 = tan™ (1/(wRC)) (15)

Our solution for V, is then
Vzn ezwt+¢>

1/2
=
This, of course, yields the same |‘~/0ut\ as we found before in Eqn. 6 of Section 3.4. But now

we also have included the phase information. The “real” time-dependent solution is then
just the real part of this:

‘/out =

‘/out (t) - éR(V:)ut) = V:)ut COS(Wt + ¢)

where ¢ is given by Eqn. 15.

3.9 Power in Reactive Circuits

Recall that for DC voltages and currents the power associated with a circuit element carrying
current [ with voltage change V' is just P = V1. Now, for time-varying voltages and currents
we have to be more careful. We could still define an instantaneous power as the product
V(t)I(t). However, it is generally more useful to average the power over time.

3.9.1 General Result for AC

Since we are considering Fourier components, we will average the results over one period
T =1/f =27 /w. Therefore, the time-averaged power is

P> %/OT V() (t)dt

where the brackets indicate the time average. Let the voltage and current be out of phase
by an arbitrary phase angle ¢. So we have V(t) = Vjcos(wt) and I(t) = Iycos(wt + ¢).
We can plug these into the expression for < P> and simplify using the following: cos(wt +
¢) = cos(wt) cos(¢) — sin(wt)sin(¢); [ sin(wt) cos(wt)dt = 0; and (1/T) [ sin®(wt)dt =
(1/T) [ cos?(wt)dt = 1/2. This yields

1
<P>= 5%]0 COS¢ = VRmsIrms COS(b (16)

In the latter expression we have used the “root mean squared”, or RMS, amplitudes. Using
voltage as an example, the RMS and standard amplitudes are related by

1/2

Vits = l% Ji ' V2(t)dt] e [% / Ty cosz(wt)dt] VNG (17)
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3.9.2 Power Using Complex Quantities

Our results above can be simply expressed in terms of V and I. Equivalent to above, we
start with V() = Vo™ and I(t) = l,e"“*%). By noting that

R(V*T) = R (Volo(cos ¢ + 15in ¢)) = Vil cos ¢

we identify an expression for average power which is equivalent to Eqn. 16 :

P> %?R(f/*f) _ %m(vz*) (18)

3.10 An RLC Circuit Example

We can apply our technique of impedance to increasingly more intricate examples, with no
more effort than a commensurate increase in the amount of algebra. The RLC circuit of Fig.
13 exemplifies some new qualitative behavior.

—_— 0

R Vout

Vin @

L

o O
Figure 13: A RLC circuit. Several filter types are possible depending upon how V is
chosen. In the case shown, the circuit gives a resonant output.

We can again calculate the output using our generalized voltage divider result of Eqn. 5.
In this case, the Z; consists of the inductor and capacitor in series, and Z; is simply R. So,

Zy = wlL —1/(wC) = L (w2 - wg)
w

where we have defined the LC resonant frequency wy = 1/ LC. We then obtain for the
transfer function:

— |‘~/out| _ R wy

B |‘~/1n| B |R+Zl| [w272+(w2—w8)2]1/2

T(w)

where v = R/L is the “R-L frequency”.

T'(w) indeed exhibits a resonance at w = wy. The quality factor @), defined as the ratio
of wy to the width of the resonance is given by @ ~ wq/(27) for 7 < wy. Such circuits have
many applications. For example, a high-@Q circuit, where Vi () is the signal on an antenna,
can be used as a receiver.
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As was shown in class, we achieve different behavior if we choose to place the output
across the capacitor or inductor, rather than across the resistor, as above. Rather than a
resonant circuit, choosing V. = V¢ yields a low-pass filter of the form

T(u}) _ | B Z/(LUC)| (US

R+ 2] w2+ (w2 - )

The cutoff frequency is wy, and for w > wy then T' ~ w2 (12 db per octave”), which more
closely approaches ideal step function-like behavior than the RC low pass filter, for which
T ~ w™! for w > wy (“6 db per octave”). As you might suspect, choosing Vi, = V7 provides
a high-pass filter with cutoff at wy and T ~ w=2 for w < wy.

3.11 More Filters
3.11.1 Combining Filter Sections

Filter circuits can be combined to produce new filters with modified functionality. An ex-
ample is the homework problem (6) of page 59 of the text, where a high-pass and a low-pass
filter are combined to form a “band-pass” filter. As discussed at length in Section 1.5, it
is important to design a “stiff” circuit, in which the next circuit element does not load the
previous one, by requiring that the output impedance of the first be much smaller than the
input impedance of the second. We can standardize this inequality by using a factor of 10
for the ratio | Zin|/| Zous|-

3.11.2 More Powerful Filters

This technique of cascading filter elements to produce a better filter is discussed in detail in
Chapter 5 of the text. In general, the transfer functions of such filters take the form (for the
low-pass case):

T(w) = [1 +anl/f07] "

where f. is the 3 db frequency, «,, is a coefficient depending upon the type of filter, and n is
the filter “order,” often equal to the number of filtering capacitors.

3.11.3 Active Filters

Filters involving LC circuits are very good, better than the simple RC filters, as discussed
above. Unfortunately, inductors are, in practice, not ideal lumped circuit elements and are
difficult to fabricate. In addition, filters made entirely from passive elements tend to have
a lot of attenuation. For these reasons active filters are most commonly used where good
filtering is required. These typically use operational amplifiers (which we will discuss later),
which can be configured to behave like inductors, and can have provide arbitrary voltage
gain. Again, this is discussed in some detail in Chapter 5. When we discuss op amps later,
we will look at some examples of very simple active filters. At high frequencies (for example
RF), op amps fail, and one most fall back on inductors.
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