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Abstract: Instruments based on light scattering used to measure total suspended particulate (TSP)
concentrations have the advantages of fast response, small size, and low cost compared to the
gravimetric reference method. However, the relationship between scattering intensity and TSP mass
concentration varies nonlinearly with both environmental conditions and particle properties, making
it difficult to make corrections. This study applied four machine learning models (support vector
machines, random forest, gradient boosting regression trees, and an artificial neural network) to correct
scattering measurements for TSP mass concentrations. A total of 1141 hourly records of collocated
gravimetric and light scattering measurements taken at 17 urban sites in Shanghai, China were used
for model training and validation. All four machine learning models improved the linear regressions
between scattering and gravimetric mass by increasing slopes from 0.4 to 0.9–1.1 and coefficients
of determination from 0.1 to 0.8–0.9. Partial dependence plots indicate that TSP concentrations
determined by light scattering instruments increased continuously in the PM2.5 concentration range
of ~0–80 µg/m3; however, they leveled off above PM10 and TSP concentrations of ~60 and 200 µg/m3,
respectively. The TSP mass concentrations determined by scattering showed an exponential growth
after relative humidity exceeded 70%, in agreement with previous studies on the hygroscopic growth
of fine particles. This study demonstrates that machine learning models can effectively improve the
correlation between light scattering measurements and TSP mass concentrations with filter-based
methods. Interpretation analysis further provides scientific insights into the major factors (e.g.,
hygroscopic growth) that cause scattering measurements to deviate from TSP mass concentrations
besides other factors like fluctuation of mass density and refractive index.

Keywords: light scattering; total suspended particulate (TSP); machine learning; hygroscopic effect

1. Introduction

Total suspended particulate (TSP) generally refers to particulate matter suspended in air with an
aerodynamic equivalent diameter of less than 100 µm. Ambient particulate matter (PM) measurements
are obtained using an offline manual method and an online automatic method. Offline methods usually
refer to integrated filter sampling followed by gravimetric weighing, which is regarded as the reference
method [1]. Filter sampling has poor time resolution (typically 24 hours) and the data are not available
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for several days while the filters are equilibrated and weighed in a laboratory. Online automatic
methods mainly include Tapered Element Oscillating Microbalance (TEOM), β-ray attenuation, and
light scattering. The TEOM method is based on the principle of frequency changes when the oscillation
element is loaded with particles, while the β-ray method estimates PM mass loading based on β-ray
energy attenuation across a PM loaded filter [2–4]. These two methods are usually accurate and
the time resolution can be as high as a few minutes; however, the large size and high cost of these
instruments limit their wide application. Light scattering methods estimate PM mass from the particle
light scattering intensity [5–7]. Due to their fast response time, high sensitivity, and low cost, light
scattering instruments are widely used as portable real-time particle monitors.

Despite the many advantages of the light scattering method, it does not measure PM mass
based on first principles (gravimetry) and it suffers from limited accuracy and stability especially
for low-cost sensors with small sampling volumes. The relationship between scattering intensity
and PM mass concentration depends on environmental conditions and particle properties, such
as relative humidity (RH), particle chemical composition, refractive index, size distribution, and
density [7–9]. Light scattering instruments are only sensitive to particles larger than ~100 nm; therefore,
they underestimate the mass concentrations of nanoparticles. However, nanoparticles are expected
to contribute only a small fraction of TSP mass in a typical ambient environment. Previous studies
have shown significant growth in atmospheric aerosols at RH higher than 70%, which enhances light
scattering and causes overestimation of PM mass (as compared to gravimetry) [8,9]. It is critical
to correct these dependencies when converting light scattering measurements by using low-cost
instruments to PM mass concentrations.

Several studies have shown that machine learning algorithms can be effective for correcting
atmospheric measurements. Suleiman et al. used Artificial Neural Networks (ANN), Boosted
Regression Trees (BRT), and Support Vector Machines (SVM) to correct the traffic-related PM10 and
PM2.5 concentrations at 19 air quality monitoring sites in urban London [9]. Zou et al. proposed a radial
basis function neural network to predict PM2.5 concentrations in Texas, USA through meteorological
factors and land-related factors [10]. Sayegh et al. used BRT to predict NOX concentrations based on the
hourly concentration, traffic, and meteorological data [11]. Most past studies focused on correcting the
concentrations of PM2.5, PM10, or gaseous pollutants such as nitrogen dioxide and carbon dioxide. In
contrast, not much research on TSP (≤100 µm) correction has been reported. Due to its wide size range,
TSP has more diverse particle physical and chemical properties, which also lead to more complicated
hygroscopic effects, making the correction of TSP mass concentrations reported by light scattering
instrument more challenging.

This study aims to develop and validate machine learning models to correct light scattering
instruments that report TSP mass concentrations. Four models were trained and tested on TSP datasets
from collocated light scattering and filter measurements in Shanghai, China. TSP is one of the main
pollutants in Shanghai, particularly in locations close to construction sites, storage piles, and busy
roads. Partial dependence plots were used to interpret factors (e.g., hygroscopic growth) affecting the
model outputs.

2. Materials and Methodology

2.1. Monitoring Instruments and Data Collection

TSP data were collected at 52 monitoring sites in the urban area of Shanghai, the largest megacity
of China, over the period from June 6, 2017 to September 20, 2018. Each site had collocated TSP mass
concentration measurements determined by online light scattering and offline filter measurements
in addition to meteorological parameters. Real-time TSP mass concentrations were measured by
a light scattering dust monitor (Model CEL-712 Microdust Pro, Casella, Bedford, UK; referred to
as Casella in this paper) calibrated by the manufacturer using Arizona road dust (ISO 12103-1 test
dust) [12]. The instrument intake flow is 1.7 L/min. The Casella uses near forward light scattering
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to reduce the influence of particle refractive indices on the scattering intensity [13]. In this study,
the TSP device measures traffic emissions. For TSP collection we used Laoying 2030 medium flow
rate intelligent TSP samplers, following the operation and QA/QC procedures specified in the China
national standards GB/T15432-1995. For gravimetry analyses, we used a Mettler-Toledo MS105DU
semi-micro balance with an accuracy of 0.01 mg. Prior to weighing, filters were equilibrated in a
chamber with controlled temperature (25 ◦C) and RH (50%) for at least 24 hrs. Each filter was weighed
twice and if the relative difference of the two weights exceeded 5%, the filter was weighed a third
time. The average concentrations of the two weights with a difference <5% are reported. The ambient
temperature and RH during the sampling period were recorded by a Hengxin AZ-8809 High Precision
Humidity Temperature Recorder at each sampling site. Furthermore, hourly mass concentrations of
ambient PM2.5, PM10, SO2, NO2, CO, and O3 were measured at the Caoxi Traffic Site with the most
abundant data records. For the remaining sits, they were obtained from nearby sites of the national
official monitoring network in Shanghai and used as the input indices for the prediction models.
To ensure spatial consistency, 17 TSP monitoring sites and 7 national monitoring stations in urban
Shanghai with geographical distances between 0.63 and 3.5 km were identified and selected (shown in
Figure 1) for this study. The information about TSP sites and nearby national monitoring stations are
shown in Table 1. This selection resulted in a total of 1141 hourly records in the monitoring datasets
that were used for the model development and validation. The parameters used as model predictors
and measurement instruments are listed in Table 2. The hourly criteria pollutant concentrations,
temperature, and humidity will help resolve the potentially confounding influences on the accuracy of
the Casella TSP measurements.

Table 1. Information about all the total suspended particulate (TSP) monitoring sites and their nearby
national monitoring stations.

No. TSP Monitoring
Sites a

Nearby National
Monitoring Stations b Data Volume Distance

(km) Comments

1 CX S. - 558 3.3 The same site

2 CX R. SSD 106 3.5 Validation site

3 GSY&XQ R. SSD 40 2.2

4 GL&GSY R. SSD 40 1.4

5 JD&DX R. PD 20 1.6

6 PDN&WS R. PD 30 1.9

7 YS R. PD 30 1.9

8 ZY&TL R. PD 30 1.7

9 CZ&YQ R. HK 30 1.2

10 CZN&SD R. HK 30 1.5

11 GY&WSD R. HK 20 0.63

12 ZJZ&NJ R. YP 30 2.8

13 LZ&CY R. YP 30 0.69

14 DDH&MC R. PT 30 0.7

15 JY&ZL R. PT 30 3

16 FXZ&CQN R. SWC 30 1.8

17 CHN&CH R. CS 30 0.97
a: TSP sites cover the measurement indices of ambient TSP online and offline mass, ambient relative humidity and
temperature. b: National Monitoring stations cover the measurement indices of ambient PM10, PM2.5, CO, SO2,
NO2, and O3.
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Table 2. Predictors used to model TSP concentrations and their corresponding measurement instruments.

Predictors Unit Measurement Instruments

Scattering TSP concentrations µg/m3 CEL-712, Casella
Hourly PM10 concentrations µg/m3 TEOM1405, Thermo Fisher Scientific
Hourly PM2.5 concentrations µg/m3 TEOM1405FDMS, Thermo Fisher
Hourly SO2 concentrations µg/m3 43iSO2 analyzer, Thermo Fisher
Hourly NO2 concentrations µg/m3 42iNOX analyzer, Thermo Fisher
Hourly CO concentrations µg/m3 48iCO analyzer, Thermo Fisher
Hourly O3 concentrations µg/m3 49i O3 analyzer, Thermo Fisher

Hourly ambient temperature degree Celsius (◦C) Hengxin AZ-8809 Temp./RH Recorder
Hourly ambient relative humidity percent (%) Hengxin AZ-8809 Temp./RH Recorder
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Figure 1. Geographical locations of 17 total suspended particulate (TSP) monitoring sites and 7 national
monitoring stations in the urban area of the megacity of Shanghai, China. The blue triangle symbols (N)
represent TSP monitoring sites, which include measurements of TSP concentrations by light scattering
and gravimetry, as well as ambient temperature and relative humidity. The red circle symbols (•)
represent national monitoring stations which include the measurements of mass concentrations of
PM2.5, PM10, SO2, NO2, CO, and O3.
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2.2. Model Development and Data Preparation

Four supervised machine learning models (support vector machines (SVM), random forest (RF),
gradient boosting regression trees (GBRT), and artificial neural networks (ANN)) were used in this
study to correct the raw TSP concentration outputs by the Casella dust monitors. SVM is a powerful
machine learning model that can perform linear or nonlinear classification, regression, and outlier
detection tasks [14,15]. RF is a branch of ensemble learning algorithms that is composed of multiple
decision trees. Ensemble learning includes Boosting and Bagging methods. RF is an extension of
Bagging [16–18], while GBRT is one of the Boosting algorithms. Predictors are gradually added in
the training process, each of which corrects its former predictor [19]. ANN is a multi-layer network
consisting of an input layer, multiple hidden layers, and an output layer. Each layer can be regarded as a
logistic regression mode. The backpropagation algorithm is used based on the gradient descent strategy.

The SVM parameters set during the training were the kernel type, cost and sigma parameters. In
this study, we used a Radial Basis Function (RBF) kernel to train the SVM model. The cost and sigma
values were 1 and 0.1, respectively. The model parameters for an RF model are the number of trees,
minimum samples split and bootstrap. We selected 500 estimators (trees) to train the RF and set the
minimum samples split to 2 and bootstrap to true. For the GBRT model, we also selected 500 trees for
the training and the learning rate was 0.01. The ANN model in this study contained two hidden layers
and 100 hidden neurons in each layer, the activation function was the Rectified Linear Unit (ReLU)
function, and the maximum number of iterations was set to 400.

The input variables included the hourly TSP mass concentrations from the Casella raw readings
based on light scattering obtained at each site, criteria pollutant concentrations from the nearest national
monitoring stations (PM2.5, PM10, SO2, NO2, CO, and O3), ambient temperature, and RH (Table 2). The
unique output variable is hourly gravimetric TSP mass concentration at the same time as the Casella
sampling. The Casella instrument monitors TSP concentrations based on light scattering continuously
and hourly averages of raw readings were used in the data analysis. We put the training dataset
(80% of total the records, randomly selected) into the four machine learning models to reconstruct
the non-linear relationship between the input and output variables. A 5-fold cross-validation as a
resampling method was used to develop the models. After model training, the remaining 20% of the
records were used to validate the reconstructed models. Due to the significant discrepancy of data
volume (from to records) between different measurement sites in this study, it is unfair and improper
to divide the training and testing datasets by station level, although the splitting by station level seems
more reasonable and could avoid the problem of information leakage. Python programming language,
pandas, and Scikit-Learn packages were used to train and validate the models.

3. Results and Discussion

3.1. Performance of Machine Learning Models in Predicting TSP

The performance of the models was evaluated using various metrics including the Mean Square
Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of
determination (R2). The mean/standard deviation R2 results of 5-fold cross-validation were 0.75/0.07
for SVM, 0.76/0.02 for GBRT, 0.78/0.03 for RF, and 0.81/0.04 for ANN. The cross-validation results
show that ANN had the best performance while the SVM model performed poorer than the other
three models.

Figure 2 shows the performance of the four trained machine learning models in predicting TSP,
and the overall predicting performance is summarized in Table 3. Figure 2a shows that the Casella
raw TSP reading based on light scattering were poorly correlated with gravimetric TSP across the
entire concentration range (~0–1000 µg/m3), with a low linear regression slope of 0.41 and R2 of only
0.10. At high concentrations (?400 µg/m3), the Casella readings did not increase with the gravimetric
concentrations. Figure 2b–e shows that the machine learning models significantly improved the
agreement between the corrected Casella and reference TSP concentrations for the 223 validation
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dataset. The linear regression slope increased from the original 0.41 to 0.91–1.11 and R2 increased
from 0.10 to 0.76–0.90. Interestingly, all four models were able to correct those high concentrations
data points (?400 µg/m3) for which the Casella seemed saturated. Among the four models, RF
and GBRT had slopes (1.02 and 1.00, respectively) closer to 1.00 than did SVM and ANN (0.91 and
1.11, respectively). However, both RF and GBRT had a small group of datasets deviating from the
regression lines with corrected concentrations being higher than the gravimetric concentrations at
concentrations < 200 µg/m3, resulting in lower R2. On the other hand, this group of “outliers” were
corrected successfully by ANN, resulting in a high R2 of 0.9. We note that the reasonable performance
of the ANN was achieved by using only two hidden layers in this study, implying that a very complex
and deep neural network is not always necessary. The SVM model had a few outliers with corrected
concentrations being lower than the gravimetric mass concentrations, partially contributing to the
lower slope and R2.
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Figure 2. Comparison of TSP concentrations determined by light scattering and machine learning
model outputs with those by gravimetric analyses. (a) LR: Linear Regression; (b) SVM: Support Vector
Machine; (c) RF: Random Forest; (d) GBRT: Gradient Boosting Regression Tree; (e) ANN: Artificial
Neural Network. y/x represents the slope, R2 is the coefficient of determination, N means the volume
of the dataset.
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Table 3. Testing performance of the machine learning (ML) models.

ML Models Slope R2 MSE (µg/m3)2 RMSE (µg/m3) MAE (µg/m3)

Original Measurement 0.41 0.10 - - -
SVM 0.91 0.76 2401.52 49.01 24.19
RF 1.02 0.82 2453.52 49.53 24.71

GBRT 1.00 0.78 2861.07 53.49 30.15
ANN 1.11 0.90 2723.42 52.19 29.18

Similar improvement in correcting raw data by machine learning models have been reported
in several recent studies. Suleiman et al. developed and applied three machine learning models
(SVM, BRT, and ANN) to predict the roadside PM10 and PM2.5 concentrations in London. The models
performed well: ~95% of predicted values were within a factor of 2 of the observations and the R2

values were in the range of 0.62–0.77 [9]. Similar to the finding of our study, Suleiman showed that the
ANN and BRT models performed better than the SVM model, especially for PM10 prediction. It was
speculated that the SVM over-fitted the PM10 data and failed to generalize the performance gained
during training. Zimmerman et al. used an RF model to correct the low-cost air quality sensors that
measured CO, NO2, O3, and CO2 [20]. The RF model consistently outperformed laboratory calibration
and multiple linear regression corrections. The RF-corrected sensor readings had relative errors of <5%
for CO2, 10%–15% for CO and O3, and ~30% for NO2. When the RF-corrected sensor readings were
regressed against reference monitors for ambient concentrations measured in Pittsburgh, Pennsylvania,
USA, the slopes of the linear regression lines for CO, NO2, and O3 were 0.86 ± 0.09, 0.64 ± 0.11, and
0.82 ± 0.05, respectively, and the R2 values were 0.91, 0.67, and 0.86, respectively. Brokamp et al. used
RF to predict PM2.5 concentrations with a 1 km × 1 km spatial resolution from aerosol optical density
and supplemental measurement data. The modeled data had an RMSE of 2.22 µg/m3 and R2 of 0.91
when compared with reference PM2.5 concentrations [18].

Figure 3 illustrates three examples of time series data obtained from the CaoXi road site, which had
the most complete data capture among all 52 TSP monitoring sites. The overall information is shown in
Table 4. During the first time period of 15 June 2017 to 22 June 2017, the average TSP concentrations were
92.28 µg/m3 and 132.22 µg/m3 from the Casella raw reading and gravimetric measurement, respectively.
The gravimetric over Casella TSP concentration ratios varied from 0.30 to 3.35. The average TSP
concentrations by the four machine learning models (SVM, RF, GBRT, ANN) were 132.85, 133.15,
132.53, and 134.04 µg/m3, deviating from the gravimetric mass by less than 1.5%. During the second
period of 23 February 2018 to 27 February 2018, the average TSP concentrations were 108.10 µg/m3 and
121.15 µg/m3 from the Casella raw reading and gravimetric measurement, respectively; the average
TSP concentrations by the four machine learning models (SVM, RF, GBRT, ANN) were 114.96, 119.92,
120.71 and 119.83 µg/m3, respectively. During the third time period of June 15, 2018 to June 30, 2018,
the raw TSP concentrations by the Casella were as high as 236.4–242.8 µg/m3 on June 20, 2018, while
the gravimetric TSP concentrations were only 65.3–89.6 µg/m3. The RH values on that day were as
high as 90.0%–93.4%. The average TSP concentrations were 94.53 µg/m3 and 107.73 µg/m3 from the
Casella raw reading and gravimetric measurements, respectively. The average TSP concentrations by
the four machine learning models (SVM, RF, GBRT, ANN) were 104.82–107.96 µg/m3. Overall, all four
machine learning methods can fit the result of the gravimetric method. The SVM model performed
poorer than the other three models.
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Figure 3. Time series of TSP concentrations obtained from gravimetric measurement, raw Casella
reading, and Casella readings corrected by four machine learning models (SVM, RF, GBRT, and ANN).
The illustrated data were obtained from the CaoXi Road site over three periods: 15 June 2017 to 22 June
2017, 23 February 2018 to 27 February 2018 and 15 June 2018 to 30 June 2018.

Table 4. Comparison of machine learning model performances at the CaoXi Road site.

Time Period
Gravimetric

Results
(µg/m3)

Casella
Results
(µg/m3)

SVM
(µg/m3)

RF
(µg/m3)

GBRT
(µg/m3)

ANN
(µg/m3)

15 June 2017 to 22 June 2017 132.22 92.28 132.85 133.15 132.53 134.04
23 February 2018 to 27

February 2018 121.15 108.10 114.96 119.92 120.71 119.83

15 June 2018 to 30 June 2018 107.73 94.53 104.82 107.94 107.73 107.96
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The random forest method provides a very convenient tool for importance analysis. It can
estimate the importance or amount of contribution by a feature by calculating the average depth
of a feature on all trees in the forest. Figure 4 plots the feature importance of different factors on
Casella readings. It can be seen that PM2.5, RH, TSP, and PM10 are the top four factors influencing TSP
concentration determined by a Casella monitor, which should be the focuses for follow-up analysis.
Among the gaseous pollutants, CO and O3 relatively higher influences as compared to SO2 and NO2.
Compared with relative humidity, the temperature had a minor direct impact on the measurement
results. Temperature affects the gas-particle partitioning of semi-volatile species, such as nitrate and
some organics. However, the mass contribution of these species to TSP is probably low and their
evaporation is also affected by RH, leading to a lower influence by temperature. As an additional
method to understand factor importance. We did an ablation study for the other three models. We
calculated the average R2 and RMSE over 5-folds cross-validation when we exclude each factor. The
results of the difference from all features are shown in Figure 4b,c. The three most impactful features
were PM2.5, RH, and TSP. Four models have almost the same results, which means the results are
scientific. We used a correlation analysis method to analyze the Pearson correlation coefficient between
features (shown in Figure 5). The closer the value is to 1, the higher the correlation is. The result
shows that the relationship between PM2.5 and PM10 is very close, which has a correlation coefficient
of 7.3. RH has a negative correlation with most features (O3, PM2.5, PM10, TSP, Tem). The correlation
coefficient between O3 and NO2 is −0.37.
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the morning hour of the day. (a) Random forest features importance, (b) SVM ablation study, (c) GBRT
ablation study, (d) ANN ablation study.
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3.2. Partial Dependence of Influencing Factors

As a model-agnostic interpretation method, the Partial Dependence Plot (PDP) charts were used
to analyze the influence of different features on the light scattering instrument [21]. The partial
dependence was estimated by calculating averages in the training data, also known as the Monte
Carlo method:

f̂Xs(Xs) =
1
n

∑n

i=1
f̂ (Xs, Xc

(i)), (1)

The Xs are the features for which the partial dependence function should be plotted and Xc are the other
features used in the machine learning model f̂ . The partial function relates the value(s) of features S to
the average marginal effect on the prediction.

PDPs were generated for RF, GBRT, and ANN. This analysis was not conducted for SVM as it
had poorer performances than the other three models and its PDPs had larger biases. Other methods,
such as ICE (Individual Conditional Expectation) and ALE (Accumulated Local Effects) plots, are
also available to reveal how features affect machine learning model predictions. These methods
will be explored in future studies. This study focuses on assessing the different influences on light
scattering monitors so we exchanged the input variable “Casella raw TSP readings” and output variable
“Gravimetric TSP results” to rebuild the model.

Both one-way and two-way plots were used to show the effects of the four variables: PM2.5,
PM10, gravimetric TSP concentrations, and RH on the Casella raw TSP readings. The scattering
hygroscopic curves, which show how RH influences light scattering-based TSP concentrations, were
further investigated. The scattering hygroscopic factor (f(RH)) was calculated by dividing the TSP
concentrations reported by the Casella at ambient RHs by the values at 40% RH. The hygroscopic
curves were derived from the one-way and two-way PDP results.
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To examine the relative importance of factors, the dependence of the TSP reading from the Casella
on one or two factors was examined using one-way or two-way partial dependence plots, respectively.
One-way partial dependence of the Casella raw TSP concentrations on the four most significant
influencing factors (gravimetric TSP, reference PM2.5, reference PM10, and RH) is plotted and shown
in Figure 6. Distinct partial dependence patterns for the four factors were observed. For the factor
of PM2.5 concentration (Figure 6a), the Casella-reported TSP concentration increased continuously
from 80 to 140 µg/m3 as the PM2.5 mass concentration increased from ~20 to 50 µg/m3; the most
rapid increase occurred in the PM2.5 mass range of 22–46 µg/m3. For the factors of PM10 and TSP
concentrations (Figure 4b,c), the Casella-reported TSP concentration increased from 85 to ~110 µg/m3

rapidly in the low mass ranges of both PM10 (<60 µg/m3) and TSP (<240 µg/m3) and then leveled
off at higher concentrations. Because the Casella derives the TSP concentration from the particle
light scattering intensity, the ratio of Casella-reported TSP to the reference PM2.5, PM10, and TSP
concentrations can be regarded as an index of aerosol mass scattering efficiency. As a result, the
relative aerosol scattering efficiency could be estimated to be 2 for PM2.5, 0.83 for PM10, and 0.2 for
TSP. These values are consistent with the theoretical dependence of scattering efficiency on particle
size [6]. Light scattering efficiencies are the highest (Mie scattering) for particles with diameters close
to the laser wavelength (635 nm for the Casella) and drop off at smaller (Raleigh scattering) and larger
sizes (geometric scattering). Particles with diameters near the laser wavelength from a higher mass
percentage in PM2.5 than in PM10 and TSP. The influence of RH (Figure 5d) was different from that
of the three PM factors. When the RH was less than ~70%, the Casella-reported TSP concentrations
were nearly independent of RH; however, when RH was higher than 70%, the Casella-reported TSP
concentrations experienced a near-exponential growth, like the classical aerosol hygroscopic growth
curve [8,9]. More details of the derived hygroscopic growth factors from PDP will be discussed in
Section 3.3.

In terms of performance differences among the three machine learning models, the PDP of the
GBRT algorithm was quite close to that of the RF algorithm. The PDP trend of the ANN algorithm
was much smoother than those of the other two algorithms. These differences may be caused by the
different structures of tree models and neural networks. Each decision tree in a set is independent, and
anyone can predict the final response. A neural network is a network connecting neurons. Neurons
cannot function without other neurons. Usually, they are grouped by layers and process the data in
each layer. The results are passed to the next layer and the neurons in the last layer are responsible for
making decisions. In this way, the marginal effect of the tree models is uneven on a small scale because
of the difference in individual predictors, while that of the neural network is much smoother because
neurons are connected.
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concentration, (b) PM10 concentration, (c) gravimetric TSP concentration, (d) relative humidity.

Two-way PDP charts can provide more comprehensive dependence information on the dependence
between the target response of light scattering TSP values and PM concentrations (PM2.5, PM10, TSP) as
well as RH. Figure 7 shows that for RH lower than 70%, the Casella-reported TSP concentrations were
dominantly influenced by PM concentrations, while the influence of RH was negligible. When RH
values were higher than 70%, Casella-reported TSP concentrations always experienced near-exponential
growth, at all PM concentration levels. Similar to the performance of the one-way PDP charts, the
two-way PDP trends of the ANN algorithm were smooth over the entire range, much different from
those of the other two algorithms.
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3.3. Derivation of Scattering Hygroscopic Growth Curve

Figure 8 shows the two-way PDP charts between the estimated scattering hygroscopic factor
(f(RH)) and PM concentrations (PM2.5, PM10, and TSP) as well as RH for the three machine learning
models (i.e., GBRT, RF, and ANN). The hygroscopic curve of RF and GBRT had similar patterns with
distinct deliquescence growth at RH ? 70%, while that of ANN showed smooth growth without
deliquescence growth. The maximum f(RH) values when RH >90% for the ANN were 2.0–2.3, also
much higher than the 1.6–2.0 for RF and GBRT. Although both GBRT and RF showed a critical RH of
~70% above which f(RH) showed a significant increase, the trends of f(RH) were different for PM2.5,
PM10 and TSP. f(RH) increased with increasing PM2.5 mass concentrations until 40 µg/m3, reached
at the maximum value of 1.9–2.1 when RH > 90%, and then decreased with a further increase of the
PM2.5 mass concentrations. For PM10, f(RH) increased with increasing PM10 mass concentrations until
50 µg/m3, and then remained at a stable maximum value of 1.6–1.7 when RH > 90%, independent of
any further increase in PM10 mass concentration. For TSP, f(RH) reached a maximum of 1.6–1.8 when
RH > 90% with a TSP initial mass concentration of 60 µg/m3, then decreased continuously to 1.2 with
increasing TSP mass. The different dependence levels of the scattering hygroscopic factor on PM size
fractions and concentrations might be related to the different mass fractions of inorganic components
such as sulfates and nitrates, which have large hygroscopic growths with distinct growth curves [22].
However, the chemical species percentages in different PM size fractions during the sampling period
were not available.
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Figure 9 further compares the f(RH) curves from GBRT, RF, and ANN with those from previous
studies on ambient aerosol hygroscopic growth. Although most hygroscopic data in the literature
refers to the PM2.5 size fraction, the general f(RH) variation patterns are still comparable with those of
TSP in this study. In previous studies, Cheng et al. reported an average hygroscopic extinction factor
f (RH = 80%) of 2.63 ± 0.45 from 24 cities in China [23]. Zhang et al. found f (RH = 85%) for PM2.5

to be 1.58 ± 0.12 in the Yangtze River Delta of China in March 2013 [24]. Liu et al. estimated that f
(RH = 80%) for PM2.5 was 2.01 ± 0.2 at an urban site in the mega-city of Beijing from October 24 to
November 9, 2007 [25]. Magi and Hobbs (2003) measured a PM2.5 f (RH = 80%) value of 2.12 ± 0.15 in
South Africa, Botswana, Mozambique, and Zambia [26]. In this study, the average f(RH = 80%) values
were 1.31, 1.37, and 1.69 derived from GBRT, RF, and ANN, respectively. The f(RH) values of PM2.5

from previous studies are about 1 to 3 times that of TSP in this study, indicating that the scattering
hygroscopic efficiency of PM2.5 is much higher than that of TSP. The mass scattering efficiency of
PM2.5 is higher than that of PM10 and TSP. This is expected because there are higher proportions of
hygroscopic inorganic components in PM2.5 than in TSP. For the specific f(RH) curve versus RH, the
pattern from the ANN shows more consistency with the previous PM2.5 pattern than do those from RF
and GBRT, although the absolute f(RH) value from the ANN was obviously higher than those from the
other two machine learning models.
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4. Conclusions

This study explored and applied four machine learning models (SVM, RF, GBRT, ANN) to
correct raw TSP concentrations reported by a Casella CEL-712, a light scattering dust monitor. The
result shows that all four machine learning models greatly improved the correlation of the TSP
concentrations reported by the Casella with filter-based measurements. Partial dependence plots
between Casella-reported TSP concentrations and reference PM2.5, PM10, and TSP concentrations
and RH provided insights into the main factors influencing the Casella TSP biases. While RH had
a negligible influence on TSP concentrations at RH < 70%, near exponential growth in the Casella
reported TSP concentrations were observed at RH > 70% by RF and GBRT. When compared with
earlier studies on the hygroscopic growth of PM2.5, it was found that the growth factors of TSP were
smaller than those of PM2.5, likely due to the lower mass percentage of hygroscopic inorganic species
in TSP. Due to the large impact of RH on Casella TSP data accuracy, more data from high RH periods
will be collected and used in model training to improve model performance.

Although a significant improvement in Casella TSP accuracy was achieved using machine learning
models, there are some limitations that should be addressed in future work: 1) The volume of the
dataset was not large enough for deeper machine learning progresses; better model performance
is expected with larger a number of hourly data, more monitoring sites, and other parameters that
can potentially indicate confounding factors (e.g., traffic volume, wind speed, and direction). 2)
TSP concentrations were not measured at the same site as the National monitoring stations, which
might cause some discrepancies. Future work should attempt collocated TSP, criteria pollutant, and
metrological measurements to obtain matching data. 3) Many of the data in this study were collected
at different times at different sites, which made comparison among different sites very difficult. Future
work should collect data simultaneously at different sites with better data completeness. 4) This study
used 80% of total combined records of all sites to train the models and the remaining 20% records to
evaluate model performance due to the huge discrepancy of records amount among stations. The
alternative is to use 80% by the number of sites for training and use the remaining 20% sites for model
evaluation. A sensitivity study is proposed to estimate the model performance by these two methods in
the future. 5) The models were specifically trained for Casella monitors. Future work should evaluate
how these models can be extended to other light scattering devices or other types of air quality sensors
(e.g., electrochemical CO, SO2, NO2, and O3 sensors).
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The emergence of a wide range of low-cost sensors in recent years is changing the paradigm of air
quality monitoring, drastically increasing spatial and temporal resolutions. However, corrections of the
raw sensor output using machine learning seems indispensable and is a perfect supplement for these
sensors. Furthermore, machine learning is no longer a black box with the assistance of interpretability
methods. Major factors affecting sensor performance can be probed and diagnosed, and more useful
scientific information could be derived from the reconstructed machine learning models.
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