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ABSTRACT 

The Royal Netherlands Meteorological Institute (KNMI) uses the Vaisala FD12P present 
weather sensor for the automated determination of visibility and of the type, intensity and 
duration of precipitation in its national meteorological observation network. Replacement of the 
FD12P is required in the near future due to discontinuation of support by the manufacturer. For 
this purpose, a field evaluation is conducted using several instruments, which have been 
selected in order to cover various techniques with respect to precipitation type discrimination. 
The instruments participating in this evaluation are the Vaisala FD12P, Vaisala PWD22, Biral 
VPF750, Biral SWS250, Campbell Scientific PWS100, Ott Parsivel2 and Thies LPM. The Optical 
Scientific OWI432 & HIP100 is envisaged but not yet available for the test. Not all selected 
instruments measure visibility. To accommodate replacement of the FD12P, these capabilities 
could be fulfilled by considering 2 separate sensors. Because earlier research pointed to 
difficulties of the FD12P to the discrimination of precipitation type during winter conditions, a 
special focus is put on the differences between sensors in the performance of this aspect. 
A reference for precipitation type is not available. The results of the selected sensors are 
compared against the precipitation type reported by the FD12P. The precipitation type reported 
by FD12P is not always correct, but the characteristics of the FD12P are well known at KNMI 
after years of operational use. The preliminary results indicate that some sensors perform better 
in the specific problem areas of the FD12P, but some new issues arise. The field evaluation of 
the sensors is not yet completed. The field test is ongoing and will include the next winter 
season. The analysis of the data also requires further refinement. No preferred sensor has been 
identified at this moment. 
The paper also gives preliminary results of the evaluation of precipitation amount and intensity 
reported by the selected sensors versus the KNMI precipitation gauge; the visibility reported by 
the sensors versus a transmissometer; and of the temperature, which the sensor uses in the 
discrimination of the precipitation type, versus the operational air temperature of the automatic 
weather station. 

1. INTRODUCTION 

KNMI employs the Vaisala FD12P Present Weather Sensor (PWS) in the national meteorological 
observation network since 1997. The FD12P is an optical forward scatter sensor that is capable of 
measuring visibility (Meteorological Optical Range, MOR) and for aeronautical applications the 
background luminance. In combination with the information obtained with a precipitation detector and a 
temperature sensor it also determines the type and intensity of precipitation. Since November 2002 all 
synoptic and climatological observations of KNMI are performed fully automatically (Wauben, 2002), in 
which the FD12P is used for the automated determination of MOR and present and past weather. More 
recently also the aeronautical observations have been automated with the exception of Amsterdam 
Airport Schiphol. In this case, the FD12P provides the aeronautical visibility, Runway Visual Range 
(RVR) and present and recent weather. In all situations the instantaneous 1-minute averaged MOR, 
background luminance and precipitation intensity and -type of the FD12P are used. KNMI algorithms 
convert the sensor information into information that is reported to the users. Currently, KNMI uses 
FD12P sensors at 4 civil airports, 8 military airbases, 13 North sea platforms and 12 automatic weather 
stations for the fully automated generation of synoptic, climatological and aeronautical reports. Although 
the FD12P sensor serves KNMI well, there have been issues related to the calibration of the MOR 
(Bloemink, 2006) and the reduction of MOR due to flying insects (Wauben, 2012). The discrimination of 
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precipitation type of the FD12P also remains an area with room for improvement (De Haij and Wauben, 
2010; Wauben, 2014). 

KNMI employs approximately 75 FD12P sensors. The FD12P is out of production since the middle 
of 2010 and the manufacturer support of the sensor will end in 2019. Hence, KNMI needs a successor of 
the FD12P. In the evaluation presented in this paper, the focus will be on the discrimination of 
precipitation type. The evaluation of sensors reporting precipitation type is difficult and no reference 
exist. Therefore KNMI selected and purchased several present weather sensors in order to get 
experience with these sensors and to be of help in the preparations for the upcoming specification and 
evaluation that will be part of an European tender. Although some of the selected sensors have been 
tested before by other institutes, these evaluations generally did not include more than half of the 
selected sensors. Also the conditions during these tests are not comparable to those in The Netherlands, 
where for example solid or mixed precipitation around 0 °C is crucial. 

2. SELECTED PRESENT WEATHER SENSORS AND FIELD SETUP 

The FD12P present weather sensor needs not necessarily be replaced by a single sensor, but separate 
sensors for visibility and for precipitation type and intensity will also be considered. The field evaluation 
for precipitation type discrimination includes the following sensors: 

 Vaisala FD12P present weather sensor (firmware 1.92S). The FD12P is currently used operationally 
by KNMI. All other sensors will be compared against this sensor. The FD12P does not serve as the 
reference, but the characteristics and the strong and weak points of the FD12P are known by KNMI. 

 Vaisala PWD22 present weather detector (firmware 2.07). The successor of the FD12P is the 
FS11P, but the precipitation type and intensity information of this sensor is obtained with a PWD22 
sensor. The PWD22 uses the same measurement principle as the FD12P. It consists of a forward 
scatter sensor, where spikes in the optical signal indicate the size of precipitation particles, and a 
precipitation detector gives information on the liquid water content. The PWD22 is equipped with a 
temperature sensor that is also used in the precipitation type discrimination. The PWD22 measures 
MOR up to 20 km. 

 Biral SWS250 present weather sensor (firmware SI100245.06A). The SWS250 is a forward scatter 
and backscatter sensor that determines the precipitation type from the size-velocity distribution of the 
particles and the ratio of forward- to backscatter. The size and velocity of the particles is determined 
from the magnitude and the duration of the spikes in the scattered signal. The SWS250 is equipped 
with a temperature sensor that is also used in the precipitation type discrimination. The SWS250 is 
the latest in the line of new compact present weather sensors of Biral. The SWS250 measures MOR 
up to 75 km. 

 Biral VPF750 present weather sensor (firmware 245.04.02.3). The VPF750 uses the same 
measurement principle as the SWS250. The VPF750 is of the older line of present weather sensors 
of Biral, but it is considered the most capable present weather sensor available from Biral in that it 
reports the greatest number of present weather types or codes and uses a temperature and humidity 
sensor to detect freezing precipitation. Since KNMI uses its own operational temperature and 
humidity sensors for the discrimination of freezing precipitation and has its own algorithms to 
generate the present, recent and past weather codes the SWS250 is a suitable choice. The Biral 
VPF750 is included in the test because it was already available at the test site of KNMI in De Bilt. 
The VPF750 measures MOR up to 75 km. 

 Thies LPM laser precipitation monitor (firmware V2.53). The LPM is a disdrometer that produces a 
horizontal light beam and measures its intensity. When a particle falls through the light beam the 
signal is reduced. The amplitude of the reduction determines the size and the duration of the reduced 
signal gives the fall speed of the particle. The precipitation type is determined form the size-velocity 
distribution. The LPM is equipped with a temperature sensor to improve the precipitation type 
identification. Two LPM instruments were already available at the test site from a previous test. Both 
have been upgraded to the latest version. Visibility is not measured by the LPM. 

 Ott Parsivel2 present weather sensor (firmware 2.02.5, in August the firmware was upgraded to 
2.10.1). The Parsivel2 is a disdrometer that uses the same measurement principle as the LPM. The 
Parsivel2 is not equipped with a temperature sensor for improving precipitation type identification. A 
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Parsivel was already available at the test site from a previous test. It could not be upgraded, so it was 
replaced by the Parsivel2. Visibility is not measured by the Parsivel2. 

 Campbell Scientific PWS100 present weather sensor (firmware 007628-07). The measurement 
technique of the PWS100 is a combination of a disdrometer and a forward scatter sensor. The 
transmitter produces four evenly spaced horizontal light sheets that are parallel to each other. Two 
receivers measure the scattered radiation at equal angles in the horizontal and in the vertical plane. 
The fall speed of the particle is determined from the time interval between the peaks as it passes the 
light sheets and the delay between the peaks detected by the horizontal compared to the vertical 
detector gives the size. The sensor determines the precipitation type from the size and velocity 
measurements and the structure of the received signal. The PWS100 is equipped with a temperature 
and humidity sensor to enhance precipitation type discrimination. The PWS100 measures MOR up to 
20 km. 

 Optical Scientific OWI430&HIPS weather identifier and visibility sensor. The OWI430 is a 
combination of a forward scatter and a scintillation sensor, which determines the precipitation type 
and intensity from the precipitation induced scintillation. The OWI430 can be equipped with an 
acoustic HIP sensor for the discrimination of hail and ice pellets. The OWI430 measures MOR up to 
10 km. 

Table 1: Overview of the requirements and specifications of the selected present weather sensors. 

Sensor Visibility Background 
luminance 

Precipitation intensity Precipitation duration Precipitation type 

WMO / ICAO MOR 10 m – 100 km 
VIS 10 m – 10 km 
1 m 
± 50 m ≤ 600 m 
± 10% @ 600 – 1500 m 
± 20% > 1500 m 
RVR 10 – 2000 m  
± 10 m ≤ 400 m 
± 25 m @ 400 – 800 m 
± 10% > 800 m 
achievable  
maximum of 20 m or 20% 

0 – 40000 cd/m2 
1 cd/m2 
± 10 % 

0.02 – 2000 mm/h 
0.1 mm/h 
detection @ 0.02 – 0.2 mm/h 
± 0.1 mm/h @ 0.2 – 2 mm/h 
± 5 % > 2 mm/h 

Threshold >0.02 mm/h 
1 minute 
±  
 

8 types  
& UP & FZ & mixtures
UP, DZ, RA, SN, PL, 
SG, IC, GS, GR 
 
ps. IC for WMO only  

Vaisala 
FD12P & LM21 

10 m – 50 km 
1 m 
± 10 % @ 10 m – 10 km 
± 20 % @ 10 – 50 km 

2 – 40000 cd/m2 
1 cd/m2 
± 10 % 

0.00 – 999.99 mm/h 
0.01 mm/h 
± 30 % @ 0.5 – 20 mm/h liquid 

≤0.05 mm/h in 10’ 8 types  
& UP & FZ & mixtures
UP, (FZ)DZ, (FZ)RA, 
SN, PL, SG, IC, GS, 
GR 

Vaisala 
PWD22 & PWL111 

10 m – 20 km 
1 m 
± 10 % @ 10 m – 10 km 
± 15 % @ 10 – 20 km 

4 – 20000 cd/m2 
1 cd/m2 
? 

0.00 – 999.99 mm/h 
0.01 mm/h 
? 

≤0.05 mm/h in 10’ 4 types  
& UP & FZ & mixtures
UP, (FZ)DZ, (FZ)RA, 
SN, PL 

Biral 
VPF-750 & ALS-2 

10 m – 75 km 
 
≤2 % @ 600 m – 2 km 
≤11 % @ 30 km 

2 – 40000 cd/m2

1 cd/m2 

≤10 % 

0.015 – ~500 mm/h 
 
≤10 % 

0.00025 mm/min = 
0.015 mm/h liquid 
0.0015 mm/h snow 
Ø <0.2 – >3.2 mm #21 
0.4 – >20 m/s #16 

7 types  
& UP & FZ & mixtures
UP, (FZ)DZ, (FZ)RA, 
SN, PL, SG, IC, GR 

Biral 
SWS-250 & ALS-2 

<10 m – 2 km (75km) 
10 m 
≤5 % < 2 km  
<10 % @ ~10 km 
<15 % @ ~20 km 
<20 % @ ~30 km 

2 – 40000 cd/m2

1 cd/m2 

≤10 % 

0.015 – ~500 mm/h 
 
≤15 % 

0.00025 mm/min =  
0.015 mm/h liquid 
0.0015 mm/h snow 

7 types  
& UP & mixtures 
UP, DZ, RA, SN, IP, 
SG, IC, GS/GR 

Campbell Scientific 
PWS100 

0 m – 20 km 
 
± 10 % @ 0 m – 10 km 

0 – 45000 cd/m2

0.1 cd/m2 

± 0.5 ≤ 5 cd/m2 

± 10 % > 5 cd/m2 

0.00 – 400 mm/h 
 
± 10 % typically 

0.0001 mm/h 
Ø 0.1 – 30 mm #34 
0.16 – 30 m/s #34 

8 types  
& UP & FZ & mixtures
UP, (FZ)DZ, (FZ)RA, 
SN, PL, SG, IC, GS, 
GR 

Ott 
Parsivel2 

- - 0.001 – 1200 mm/h 
0.001 mm/h 
± 5 % liquid 
± 20 % solid 
 

Ø 0.2 – 5 mm, #32 
25 mm solid 
0.2 – 20 m/s, #32 

6 types  
& mixtures 
DZ, RA, SN, PL, SG, 
GR 

Thies - - <0.005 – >1000 mm/h Ø 0.16 – > 8 mm, #22 6 types  
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Sensor Visibility Background 
luminance 

Precipitation intensity Precipitation duration Precipitation type 

LPM 0.001 mm/h 
≤15 % @ 0.5 – 20 mm/h liquid 
≤30 % snow 
 

0.2 – > 10 m/s, #20 & UP & FZ & mixtures
UP, (FZ)DZ, (FZ)RA, 
SN, PL/GS, SG/IC, 
GR 

Optical Scientific 
OWI430 & HIPS 

1 m – 30 km 
 
± 10 % @ 1 m – 5 km 
± 15 % @ 5 – 10+ km 

0 – 10000 cd/m2

 
± 5 % 

0.1 – 3000 mm/h 
 
± 5 % liquid 
± 10 % snow 

0.1 mm/h liquid 
0.01 mm/h snow 
0.001 mm accumulation 

5 types  
& UP & FZ & mixtures
UP, (FZ)DZ, (FZ)RA, 
SN, PL, GR 

An overview of the requirements and the specifications of the selected present weather sensors is 
given in Table 1. Reported are the range, resolution and measurement uncertainty of the meteorological 
units reported by the sensors. Since the focus in this study is on precipitation type discrimination, the 
visibility range of the selected sensors was not optimized. Sometimes sensors with a limited visibility 
range have been selected although versions were available with a larger range. The background 
luminance sensor is also not purchased for this evaluation. Note that the selected present weather 
sensors cover a variety of measurement techniques. Techniques that are not included are Doppler radar 
systems, 2D video disdrometers or dedicated hail or freezing precipitation sensors. The reasons for not 
including sensors applying these techniques varies. They are either too expensive, not ready for 
operational 24*7 use, cannot be considered as a replacement for the FD12P, or were considered to be 
not as promising as the selected sensors. 

The selected sensors were purchased and directly installed in the test field at the main premises of 
KNMI in De Bilt. The sensors have not been subjected to laboratory tests since they are difficult to 
perform and the results with respect to precipitation type discrimination are limited. The focus was on 
getting the sensors in the field as fast as possible in order to make optimal use of the winter period. The 
sensors were installed at existing locations on the test field around the middle of February 2016. Only 
the OWI430&HIPS has not yet been obtained due to KNMI difficulties with procurement procedures. 
Figure 1 shows the setup of the selected present weather sensors on the test field in De Bilt. The test 
field is also equipped with a standard Automatic Weather Station (AWS) so that meteorological 
information of for example air temperature, humidity and wind is available. A Vaisala Mitras 
transmissometer is available on the test field and serves as the reference for MOR values up to 2 km. A 
rain gauge of in-house design serves as the reference for the precipitation amount and intensity reported 
by the selected present weather sensors. For high visibility values and for precipitation type, no 
reference is available, but the selected present weather sensors will be compared against the results 
obtained with the FD12P since the characteristics and the strong and weak points of the FD12P are 
known by KNMI after years of operational use. In addition, the precipitation type will be evaluated using 
camera images of the test field and by considering the meteorological conditions. The 1-minute 
averaged values (or shorter) of the meteorological units of all present weather sensors under evaluation 
have been acquired with an update interval of at least 1 minute. When possible, raw data from which the 
precipitation type has been derived has also been archived. This facilitates more detailed analysis and 
future optimization and reprocessing by the manufacturer. The evaluation period considered in this paper 
is from February 18, 2016 to July 31, 2016. 

For the evaluation 1-minute sensor data is used. For precipitation type the “maximum” or most 
important type according to the order in Table 2 in the previous minute is considered. For precipitation 
intensity, MOR and temperature 1-minute averages are considered. Note that one or more valid sensor 
values in the preceding minute leads to a valid 1-minute value. No processing has been performed to the 
sensor data. Sensor data is used as reported. Hence a correction of the precipitation type, such as 
discrimination of freezing/non-freezing using the operational air temperature sensor in a radiation screen, 
is not performed. 

An overview of the results for precipitation type, precipitation intensity, MOR and temperature is 
given in sections 3, 4, 5 and 6, respectively. Section 7 gives some examples of illustrative results by 
showing the PWS measurements on selected days. A reader with an interest in precipitation type only 
can skip sections 4 to 6. However, it should be noted that precipitation intensity is relevant for 
precipitation type because an intensity threshold is used for reporting precipitation type. Also the 
precipitation type eventually needs to be reported in intensity classes. The temperature of the PWS is 
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3. GENERAL OVERVIEW OF THE RESULTS FOR PRECIPITATION TYPE 

In this section an overview of the results for the 1-minute precipitation type reported by the PWSs under 
evaluation is given. The instantaneous precipitation type is reported by the sensor in the so-called NWS 
code of the National Weather Service, the METAR weather code of ICAO or the wawa weather code of 
WMO. Note that here only the codes concerning precipitation type at the moment of observation are 
considered. Other codes are treated as no precipitation. In terms of the NWS code the following cases 
can be distinguished: “C” means clear or no precipitation; “P” for unidentified precipitation; “L” for drizzle; 
“ZL” for freezing drizzle; “LR” for a mixture of drizzle and rain; ZL” for freezing drizzle; “R” for rain; “ZR” 
for freezing rain; “RS” for a mixture of rain and snow; “S” for snow; “IP” for ice pellets; “SG” for snow 
grains; “IC” for ice crystals; “SP” for snow pellets; and “A” for hail. The precipitation type can also be 
divided in the classes: unidentified precipitation (P); liquid precipitation (L, LR or R); freezing precipitation 
(ZL or ZR); and solid precipitation (RS, S, IP, SG, IC, SP or A); or most generally in terms of precipitation 
(all types). Detection of precipitation is in fact considered in the last case. The relation between NWS 
and wawa code and between NWS and METAR code is given in Figure 2. 

The relative occurrence of the precipitation types reported by all present weather sensors in the 
evaluation period is given in Table 2. Here the row indicated by “NA” gives the percentage of 1-minute 
intervals in the evaluation period with unavailable data or when the sensor reported an invalid 
precipitation type. About 0.2 to 6.1 % of the data is unavailable. Data is mostly missing due to problems 
with the network and data-acquisition. The Parsivel2 sometimes stopped operating and did not respond 
to the polling command anymore and had to be restarted to resume the data-acquisition. The line 
indicated by “C” denotes the percentage of valid cases that the sensor reported that there was no 
precipitation, whereas “precipitation” gives the percentage of valid cases that the sensor reported any 
type of precipitation. Precipitation is reported 9 to 10 % of the time by the two Vaisala sensors and the 
Pasivel2. The two Biral sensors report precipitation less often (about 6.5 %) whereas the PWS100 and 
LPM report precipitation more often (about 13 to 14 %). This indicates that the PWS100 and LPM are 
more sensitive and the VPF750 and SWS250 less sensitive compared to the FD12P. The KNMI 
precipitation gauge reported precipitation 9 % of the time during the evaluation period. Note that the 
above results apply when no intensity threshold is used for reporting precipitation and precipitation type, 
whereas WMO recommends using a threshold of > 0.02 mm/h for reporting precipitation. Note that KNMI 
experiences generally no problems with the FD12P regarding precipitation detection. KNMI uses the 
FD12P in combination with a 0.05 mm/h reporting threshold for synoptic purposes, and 0.03 mm/h for 
aeronautical purposes. 

The next rows of Table 2 give the percentage of time that precipitation is reported as a specific type 
(“P” to “A”) or class (“unidentified” to “solid”). Here only the 1-minute intervals when a sensor reports 
precipitation are considered. Hence the sum of all types and the sum of all classes add up to 100 % for 
each sensor. The FD12P is 3% of the time unable to identify the type of precipitation, for the PWS100 
this is nearly 10 % and for the LPM it is the case for 2 to 4 % of the precipitation events. The other 
sensors do not report any cases with unidentified precipitation. The results for the LPM are surprising 
since previous field evaluations showed that the LPM generally reports unidentified precipitation as a 
result of spiders or spider webs. Note that unidentified precipitation is not a desirable result since users 
have to assume the worst precipitation type. However, generally unidentified precipitation is overruled by 
any other precipitation type that occurs in the interval that is used for reporting the weather in the 
synoptic and aeronautical reports. Liquid precipitation has been reported most often by all sensors and 
ranges between 89 % (for PWS100) and 98 %. Liquid precipitation occurs mainly as rain. The rain to 
drizzle ratio varies widely between the sensors and is largest for the PWD22 (83:15) and VPF750 
(77:20) and smallest for the Parsivel2 (42:56). The LPM is the only sensor that reports a mixture of rain 
and drizzle as the instantaneous precipitation type. The deviations in the rain and drizzle classification 
suggest that there are discrepancies in the estimation of the size of the detected precipitation particles. 
This will be investigated in more detail in the next section when precipitation intensity is considered. 

The occurrence of freezing precipitation is negligible and is only reported by the FD12P and the 
VFP750. Note that the discrimination of freezing or liquid precipitation by the sensor is not relevant for 
KNMI as freezing or non-freezing precipitation will be determined by the operational temperature sensor 
of KNMI. Precipitation occurs approximately 2 % of the time as solid precipitation. The VPF750 and 
SWS250 reported more solid precipitation (3 and 6 %, respectively) and the PWS100 less (1 %), but the 
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latter reports many unidentified precipitation events. The experience with the FD12P is that it generally 
reports too few solid precipitation events, particularly when the temperature is around zero degrees and 
in situations with wet snow. Solid precipitation is recorded mostly as snow by all sensors, except for the 
VPF750 and SWS250, where the mixture of rain and snow dominates. Also note the relatively high 
values of SG reported by the FD12P (a known problem that occurs during dense fog) and by the 
VPF750 and SWS250; IP reported by the PWD22; and SP reported by the Parsivel2. 

Table 2: The relative occurrence of the 1-minute precipitation type reported by the selected 
present weather sensors during the evaluation period. 

NWS wawa FD12P PWD22 VPF750 SWS250 PWS100 Parsivel2 LPM1 LPM2 

NA - 0.281% 0.239% 4.607% 0.764% 0.848% 6.131% 2.068% 2.090%

C 0 89.958% 90.398% 93.363% 93.525% 87.070% 90.838% 86.019% 86.560%

precipitation >0 10.042% 9.602% 6.637% 6.475% 12.930% 9.162% 13.981% 13.440%

P 40 3.022% 0.000% 0.000% 0.000% 9.875% 0.000% 4.211% 1.785%

L 50 36.401% 14.504% 20.043% 30.141% 22.596% 55.894% 33.290% 33.623%

ZL 55 0.042% 0.000% 0.386% 0.000% 0.000% 0.000% 0.000% 0.000%

LR 57 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 13.476% 13.647%

R 60 58.353% 83.119% 76.541% 64.357% 66.767% 41.786% 47.461% 49.256%

ZR 65 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

RS 67 0.483% 0.000% 1.609% 3.177% 0.000% 0.088% 0.372% 0.422%

S 70 1.026% 1.837% 0.379% 0.838% 0.735% 1.072% 0.876% 0.908%

IP 75 0.092% 0.540% 0.000% 0.000% 0.003% 0.000% 0.181% 0.221%

SG 77 0.559% 0.000% 0.452% 1.192% 0.023% 0.000% 0.031% 0.048%

IC 78 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

SP 87 0.000% 0.000% 0.186% 0.131% 0.000% 0.974% 0.000% 0.000%

A 89 0.021% 0.000% 0.406% 0.164% 0.000% 0.186% 0.101% 0.090%

unidentified 3.022% 0.000% 0.000% 0.000% 9.875% 0.000% 4.211% 1.785%

liquid 94.755% 97.623% 96.583% 94.498% 89.363% 97.680% 94.227% 96.527%

freezing 0.042% 0.000% 0.386% 0.000% 0.000% 0.000% 0.000% 0.000%

solid 2.181% 2.377% 3.031% 5.502% 0.762% 2.320% 1.562% 1.689%

A suitable method to compare the precipitation type reported by the different sensors is by means of 
a contingency matrix. The contingency matrix shows the number of times a specific type is reported by a 
sensor (row) and the type reported by the “reference” sensor (column) at that moment. The contingency 
matrix for the PWD22 versus the FD12P is given in Figure 2. It indicates the wawa code in second row 
and second column, but also the corresponding NWS and METAR codes in the first row and column, 
respectively. The numbers given in the contingency matrix can be used to calculated scores for each 
individual precipitation type. However, this is not always suitable since not all types are reported by each 
sensor. Furthermore, the number of cases involved for some types is small and the distinction between 
some types, even between drizzle and rain, is not always relevant for users. Hence it is more suitable to 
calculate the scores for the precipitation classes. The classes are indicated by the boxes in Figure 2. The 
vertical blocks indicate cases when no precipitation (white); unidentified precipitation (grey); liquid 
precipitation (blue); freezing precipitation (orange) and solid precipitation (green) is reported by the 
“reference” sensor. The solid colours indicate cases where both sensors report the same precipitation 
class. Note that the order of the precipitation types in Figure 2 has been changed compared to Table 2 in 
order to facilitate the indication of the precipitation classes. 
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Figure 2: Contingency matrix of the 1-minute precipitation types reported by the PWD 22 versus 
the FD12P present weather sensor during the evaluation period. 

The numbers given in the contingency matrix can be used to calculated some statistical quantities 
that give information about the measure of agreement between data sets of the two sensors under 
consideration. The quantities are the slope of the linear regression, the standard error of the linear fit and 
the correlation coefficient of the 1-minute precipitation type reported by a sensor versus the type 
reported by the FD12P. The values for these quantities are given in Table 3 and shown in Figure 3 for all 
PW sensors. The PWD22 shows generally the best agreement with the FD12P. The PWS100 and LPM 
show good results for the slope, whereas the VPF750 and SWS250 perform good for the standard error. 
The results for the correlation coefficient show the same trend as the slope, but the results for the 
PWD22 exceed that of the other sensors more clearly. Note that the calculation of these quantities 
includes situations with no precipitation, which occur most often. Other quantities that have been 
considered are the percentage of cases that no-precipitation and precipitation (denoted by “correct y&n”) 
are in agreement relative to the number that both sensors have valid data; the percentage of cases that 
the precipitation type (“correct type”) is in agreement relative to the number that both sensors report 
precipitation; and the percentage of cases that the precipitation class (“correct class”) is in agreement 
relative to the number that both sensors report precipitation. The latter two quantities are the fraction of 
cases with precipitation that are exactly on the diagonal of Figure 2 and the fraction in the solid coloured 
areas, respectively. These quantities also give some insight in the agreement between the sensors. The 
PWD22 compares again best with the FD12P in terms of “correct y&n”. Note that the KNMI precipitation 
gauge has a score of 95 % for “correct y&n”. In terms of “correct type”, the VFP750 and SWS250 
compared best to the FD12P and the LPM the worst. In terms of “correct class” the SWS250 and 
PWS100 differ the most from the FD12P. The last 2 scores are mainly determined by the drizzle and rain 
events that occur most often. Lower scores for “correct type” indicate differences in type discrimination 
between drizzle and rain (or a mixture of drizzle and rain). When the classes are considered, these 
events all are in the liquid class and the scores improve. 

Table 3: Overview of several quantities indicating the agreement between the 1-minute 
precipitation type reported by a PWS and the FD12P during the evaluation period. 

Quantity PWD22 VPF750 SWS250 PWS100 Parsivel2 LPM1 LPM2 +1 minute LPM2/LPM1 

slope 0.9322 0.6713 0.6397 0.9659 0.7161 0.9409 0.9453 0.9608 0.9194

std. error 7.1705 8.8861 9.2001 9.9617 10.0844 10.9100 10.4077 4.7038 7.0726

correlation 0.8294 0.6275 0.5815 0.7221 0.5995 0.6847 0.7068 0.9231 0.8645

correct type 69.5% 77.5% 76.4% 67.8% 69.2% 59.1% 59.7% 93.8% 88.5%

correct class 97.0% 97.0% 95.3% 95.1% 97.0% 96.4% 96.3% 98.7% 97.4%

correct y&n 98.1% 95.9% 95.6% 96.0% 95.8% 95.2% 95.7% 99.0% 95.8%

Note that Table 3 also gives the result for the FD12P data, but shifted 1-minute in time, compared to 
the original FD12P data and the results for LPM2 versus LPM1. When the 1-minute precipitation type, 
reported by the FD12P but delayed by 1-minute, is compared to the original FD12P data, the agreement 
as given by the quantities considered in Table 3 is the best. The largest improvements occur for the 

FD12P C P L LR R ZL ZR RS S IP SG IC SP A

PWD22 0 40 50 57 60 55 65 67 70 75 77 78 87 89

GR 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GS 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IC 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SG 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PL 75 6 7 0 0 80 0 0 16 14 0 0 0 0 0

SN 70 2 5 0 0 74 0 0 75 210 22 30 0 0 0

RASN 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FZRA 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FZDZ 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RA 60 983 308 5241 0 12226 10 0 24 3 0 4 0 0 5

DZRA 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DZ 50 309 125 2390 0 477 0 0 0 0 0 0 0 0 0

UP 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 211726 274 1030 0 1016 0 0 0 17 0 99 0 0 0
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for precipitation detection agreement increase, except for PWD22 versus FD12P where there is a slight 
decrease. The highest increases in the agreement with the FD12P is obtained for the PWS100 and 
Parsivel2. The positive BIAS for the PWS100 disappears. For the LPM the FAR decreases significantly. 
Similar changes are obtained for liquid precipitation. For solid precipitation the POD increases for all 
sensors, but in particular for the VPF750, SWS250, Parsivel2 and LPM. The effect of the threshold on the 
FAR for solid precipitation is small. The BIAS with respect to the FD12P increases for all PWSs when the 
threshold is applied, in particular for VPF750 and SWS250. 

Table 5: The relative occurrence of the 1-minute precipitation type reported by the selected 
present weather sensors and scores for precipitation classes using a 0.02 mm/h threshold. 

Class / Score FD12P PWD22 VPF750 SWS250 PWS100 Parsivel2 LPM1 LPM2 

precipitation 8.846% 8.221% 6.580% 6.397% 7.867% 8.763% 10.948% 10.493%

unidentified 2.271% 0.000% 0.000% 0.000% 1.797% 0.000% 4.573% 1.475%

liquid 95.525% 97.470% 96.560% 94.470% 96.984% 97.575% 93.496% 96.436%

freezing 0.024% 0.000% 0.382% 0.000% 0.000% 0.000% 0.000% 0.000%

solid 2.180% 2.530% 3.058% 5.530% 1.219% 2.425% 1.931% 2.089%

POD detection  87.1% 71.4% 68.9% 82.1% 81.2% 96.6% 96.5%

FAR  5.8% 0.4% 4.3% 11.9% 14.7% 20.6% 16.9%

BIAS  0.925  0.717 0.720  0.932 0.952  1.217  1.161 

POD liquid  87.0% 71.0% 67.2% 82.3% 81.0% 96.5% 96.2%

FAR  7.8% 2.1% 5.6% 13.1% 16.7% 19.0% 17.9%

BIAS  0.944 0.725 0.712 0.948 0.973 1.191 1.172

POD solid  73.1% 64.8% 69.4% 49.7% 67.2% 67.6% 68.5%

FAR  32.3% 35.1% 62.0% 2.7% 35.2% 37.2% 38.6%

BIAS  1.079 0.998 1.825 0.510 1.037 1.077 1.116

4. GENERAL OVERVIEW OF THE RESULTS FOR PRECIPITATION INTENSITY 

In this section an overview of the results for the 1-minute precipitation intensity reported by the PWSs 
under evaluation is given. Here the KNMI precipitation gauge serves as the reference. Only situations 
where either the PWS or the KNMI gauge or both report precipitation are considered. This reduces the 
number of relevant cases to about 10 to 16 %. Figure 5 gives the relative occurrence of the differences 
between the 1-minute averaged precipitation intensity of a PWS and the KNMI gauge (PWS−Gauge) 
using a bin width of 1 mm/h. Table 6 gives some key numbers of these differences and the total 
precipitation sum obtained by each PWS and the number of precipitation events. The KNMI gauge 
reported 443.54 mm in 20431 events. FD12P and LPM report much larger precipitation sums, VPF750, 
SWS250 and PWS100 give much lower sums. The LPM reports many more events with precipitation 
and the SWS250 much less. Figure 5 shows that the distribution of the differences in precipitation 
intensity is rather broad. Differences up to ±10 mm/h and more occur. The distribution of the differences 
in precipitation intensity has a standard deviation of approximately 2 to 3 mm/h. The standard deviation 
is about 1.5 mm/h for the PWD22 and one LPM. WMO specifies a required measurement uncertainty of 
±0.1 mm/h for intensities between 0.2 and 2 mm/h and ±5 % for intensities exceeding 2 mm/h. Traces of 
precipitation, i.e. intensities between 0.02 and 0.2 mm/h are only relevant for detection of precipitation 
(yes/no). The percentage of precipitation events where PWS and KNMI gauge agree within the WMO 
limits of ±0.1 mm/h or ±5 % is typically 38 to 45 % (see Table 6). The LPM has better (60 %) and the 
SWS poorer (31 %) agreement with the gauge. 

Note that KNMI operates the FD12P present weather sensor using the default manufacturer’s 
settings. The manufacturer recommends that the intensity is rescaled with the amount reported by a 
calibrated rain gauge during a field comparison over a suitable period. This is not easy to handle in 
practice and therefore not done by KNMI. The precipitation intensity of the FD12P is only used 
qualitatively by KNMI. This explains the large differences that can occur between the FD12P and KNMI 
gauge. The same may apply to some other PWS. The precipitation intensity of the Parsivel2 and LPM, 
however, is calibrated by the manufacturer. Rescaling the precipitation intensity of the PWS so that the 
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higher values for VPF750 and SWS250. The LPM performs poorly for the standard error. Parsivel2 and 
LPM have a low correlation with the FD12P, whereas the other PWSs show little variations. Comparing 
the 1-minute MOR reported by the PWSs in this manner seems not so suitable since the variability is 
large. Figure 10 shows a density plot of the MOR reported by the VPF750 and the FD12P. The bin width 
is 1 km for values up to 50 km. A large scatter is evident from Figure 10. Figure 10 also shows that the 
VPF750 reports higher MOR values than the FD12P over nearly the entire MOR range. 

Table 9: POD, FAR and BIAS scores for MOR in various visibility classes using the TMM as 
reference when class limits are below 2 km and the FD12P otherwise. 

Score FD12P PWD22 VPF750 SWS250 PWS100 Parsivel2 LPM1 LPM2 

POD 0-800 94.0% 91.7% 88.2% 90.8% 95.9% 0.3% 33.3% 35.5%

FAR 24.4% 9.8% 8.6% 19.4% 35.6% 97.8% 90.1% 90.8%

BIAS  1.244   1.017  0.965  1.127  1.490  0.130  0.028   0.030 

POD 800-1500 59.0% 56.6% 31.6% 45.6% 28.1% 1.2% 14.6% 12.2%

FAR 41.2% 39.9% 58.9% 65.0% 90.8% 97.0% 86.4% 89.2%

BIAS  1.003   0.942  0.768  1.302  3.062  0.383  0.140   0.147 

POD 1500-3000  72.3% 51.9% 60.5% 20.4% 4.7% 21.8% 22.0%

FAR  37.0% 46.9% 57.4% 92.1% 88.2% 76.3% 76.1%

BIAS   1.148  0.977  1.419  2.595  0.401  0.198   0.200 

POD 3000-5000  66.6% 57.0% 58.2% 7.2% 7.7% 22.7% 24.0%

FAR  38.9% 42.9% 49.6% 96.8% 75.2% 56.4% 55.2%

BIAS   1.091  0.995  1.150  2.280  0.311  0.167   0.173 

POD 5000-8000  64.7% 53.3% 55.3% 6.8% 5.9% 19.4% 19.5%

FAR  34.9% 36.4% 40.7% 96.8% 75.0% 62.7% 62.9%

BIAS   0.994  0.837  0.930  2.084  0.238  0.136   0.141 

POD 8000-999999  97.6% 98.4% 95.5% 75.8% 97.3% 99.6% 99.6%

FAR  2.0% 3.7% 3.0% 0.8% 15.3% 15.8% 15.8%

BIAS   0.996  1.022  0.984  0.764  1.149  1.183   1.183 

POD 0-1000 93.2% 90.3% 87.5% 88.9% 96.1% 1.3% 50.5% 51.5%

FAR 24.5% 10.7% 8.9% 21.9% 43.2% 92.1% 67.3% 69.9%

BIAS  1.234   1.011  0.961  1.140  1.694  0.159  0.037   0.040 

The differences between the MOR of a PWS and the FD12P cannot always be adequately 
expressed in terms of averaged values and the standard deviation. The users are often interested in 
specific visibility classes. The agreement for these classes is then again expressed in terms of POD, 
FAR and BIAS that are related to the occurrence or not of these specific events. Table 9 gives the 
scores for the 1-minute MOR of a PWS versus the reference using the limits for issuing a special 
aeronautical reports for visibility, i.e. a change of the visibility through one of the thresholds 800, 1500, 
3000, 5000 or 8000 m. Furthermore the limit of 1000 m for fog in considered. The FD12P is used as 
reference, except when the limits of a class are below 2 km, when the TMM is used as reference. In that 
case, the scores for the FD12P are also included in Table 9. The scores for fog, MOR between 1500 m 
and 3 km, MOR between 5 and 8 km, and MOR exceeding 8 km are also shown in Figure 11. In all 
cases the visibility in precipitation reported by the disdrometers has the poorest score and a negative 
(well below unity) BIAS, unless the visibility class includes the MOR value the disdrometer reports in the 
absence of precipitation. The POD for fog is about 87 to 96 % for the other PWSs. The FAR varies more 
widely and follows the BIAS. The large positive BIAS of the PWS100 leads to a high FAR. The FD12P, 
PWD22, VFP750 and SWS250 compare equally well with the TMM for fog, but a PWS with a better POD 
has a worse FAR. For the mid-range of MOR values the PWD22 compares best with the FD12P, but the 
scores of the VFP750 and SWS250 are close. The same is true for the high MOR range. Here the 
PWS100 has a negative BIAS leading to a low FAR, but also a poor POD. 
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with the temperature sensor inside the PWS have the highest standard deviation of 1.2 °C. The PWD22 
has an offset of 0.5 °C, the SWS250 has an offset of -1.4 °C. The reason for the large negative offset of 
the SWS250 is unclear. Both the PWD22 and SWS250 are installed at a height of 2.5 m. Note that the 
FD12P has a temperature sensor mounted in the mast. This temperature sensor was not available for 
this test since it is not used operationally. WMO requires a measurement uncertainty of ±1 °C for air 
temperature. The separate temperature sensors of the VPF750 and PWS100 agree, within the WMO 
requirements, with the AWS more than 99 % of the time. For the PWD22 and LPM1 agreement is 
obtained about 70 % of the time. For the SWS250 and LPM2 the agreement is poor as a result of the 
bias. 

Table 10: Statistics on the differences between the 1-minute averaged temperature of a PWS and 
the AWS (in °C). 

 
PWD22 VPF750 SWS250 PWS100 LPM1 LPM2 Parsivel2 

# 236830 226459 236829 235421 232602 232443 222943 

minimum -2.5 -18.1 -4.9 -10.5 -1 -0.4 -6.1 

0.05% -1.9 -0.3 -3.5 -0.42 -0.5 0.1 -5.4 

0.5% -1.4 -0.1 -3.2 -0.25 -0.2 0.4 -4.7 

2.5% -1.1 0 -3 -0.17 0 0.5 -4.2 

5% -0.9 0 -2.8 -0.13 0 0.6 -4 

10% -0.8 0.1 -2.7 -0.09 0.1 0.7 -3.6 

25% -0.4 0.2 -2.3 -0.01 0.3 0.9 -2.8 

50% 0.1 0.3 -1.7 0.1 0.6 1.2 -1.2 

75% 1.3 0.5 -0.7 0.22 1.2 1.7 4.3 

90% 2.2 0.7 0.3 0.39 2 2.4 8.2 

95% 2.7 0.8 1.1 0.54 2.5 3 9.7 

97.5% 3.2 0.9 2 0.7 3 3.5 11.1 

99.5% 4.1 1.2 3 1.08 4 5 13.6 

99.95% 4.8 1.5 3.7 1.64 5.8 7.3 15.2 

maximum 5.5 2.2 4.7 2.94 7.6 9 16.5 

average 0.483 0.352 -1.381 0.131 0.861 1.402 0.849 

std. dev. 1.182 0.242 1.250 0.226 0.818 0.810 4.615 

skew 0.848 -1.089 1.213 -0.374 1.667 2.113 0.894 

WMO ±1°C 67.63% 99.04% 26.53% 99.30% 70.61% 41.68% 10.88% 

 

Table 11: Overview of several quantities indicating the agreement between the 1-minute 
temperature reported by PWS and AWS, and the POD, FAR and BIAS scores for temperature 
above and below zero °C. 

 
PWD22 VPF750 SWS250 PWS100 LPM1 LPM2 Parsivel2 

slope 1.0409 0.9869 0.9455 0.9861 1.0498 1.0525 1.4233 

std. error 1.1504 0.2262 1.1972 0.2063 0.7463 0.7312 3.6898 

correlation 0.9731 0.9988 0.9650 0.9990 0.9887 0.9892 0.8645 

POD 0-98 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 97.6% 

FAR 0.9% 0.9% 1.0% 0.4% 0.6% 1.1% 0.1% 

BIAS 1.009  1.009 1.009 1.004 1.006 1.011  0.977 

POD -98+0 49.5% 66.4% 44.5% 82.6% 77.5% 54.1% 97.3% 

FAR 2.9% 0.0% 4.5% 0.0% 0.4% 0.0% 68.6% 

BIAS 0.510  0.664 0.466 0.826  0.778 0.541  3.099 
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Figure 22: Plot of the MOR for all PWSs and the TMM on July 9, 2016 showing the entire day (left) 
and the situation between 0 and 5 UT (lower left) and between 19 and 22 UT (lower right). 

The final case with measurements of the PWSs is not related to precipitation type, but concerns the 
MOR only. Figure 22 shows the results for July 9, 2016 when fog occurred in the morning. Note that the 
visibility in precipitation that is reported by Parsivel2 and LPM is included in the graph. These 
disdrometers do not detect fog and report there default maximum value. Only when the sensor detects 
precipitation is a visibility reduction, caused by these particles only, reported. The results of the TMM, the 
reference for visibilities below 2 km, is given by the thick line. When the fog lifts the MOR the TMM 
increases to about 15 km at about 8 UT and remains there for the rest of the day. The MOR of the 
forward scatter PWS reaches values of 20 to 50 km during the second half of the day. The MOR range 
of the PWD22 is 20 km and the sensor reaches this value at noon. The range of the PWS100 is also 20 
km, but this values is not reached. Between 5 and 12 UT the PWS100 shows an underestimation of the 
MOR compared to the other forward scatter PWS. The VPF750 and SWS250 shows some events with 
reduced MOR values between 5 and 14 UT. During the fog event all visibility sensors report low MOR 
values. The agreements is good although the VPF750 reports sometimes higher values and the 
PWS100 reports lower MOR values when MOR is above 1 km. The MOR of all sensors (including TMM) 
have large fluctuations, so the fog conditions seem to vary. The reduced MOR values between 20 and 
21 UT are caused by flying insects. The signal scattered by the insects leads to reduced MOR values. 
The MOR reported by the TMM is not affected. The insect problem occurs during twilight in calm 
conditions. Note that MOR reduction varies rapidly from one minute to the next, causing spikes. Some of 
these spikes (for the VPF750) reach MOR values below 1 km, while the MOR is probably about 50 km. 
The reason why the MOR of the TMM is not affected by the insects is probably the larger size of the 
measurement area.  
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8. SUMMARY AND CONCLUSIONS 

The evaluation of the precipitation type reported by the PWSs is complicated by the fact that no 
reference exists. The measurements of the PWSs are compared against the precipitation type reported 
by the FD12P. The precipitation type reported by FD12P is not always correct, but the characteristics of 
the FD12P are well known by KNMI after more than 15 years of operational experience and several field 
evaluations against other sensors and against observers. The preliminary results of the field evaluation 
regarding precipitation type are: 

 The FD12P is generally considered good for precipitation detection. Compared to the FD12P, the 
VPF750 and SWS250 are less sensitive, the PWS100 and LPM are more sensitive, and the other 
PWSs have similar sensitivity. Similar results for the sensitivity of the PWSs compared to the 
FD12P are obtained when a threshold of 0.02 mm/h is applied. The exception is that the 
PWS100 has a similar sensitivity as the FD12P when the threshold is used. 

 The FD12P reports 2 to 3 % of the precipitation as unidentified precipitation, which causes 
problems for the users. Of the other PWSs only the PWS100 and LPM report unidentified 
precipitation. The fraction of unidentified precipitation reported by the PWS100 is very high when 
no intensity threshold is used. 

 The FP12P generally reports too few cases of solid precipitation. During the field evaluation 
period, the PWS100 reports even fewer cases than the FD12P and the SWS250 reports many 
more solid precipitation cases. The other PWSs report numbers comparable to the FD12P. The 
PWD22, VPF750 and Pasivel2 report higher and the LPM reports lower numbers than the FD12P. 

 The FD12P generally reports too many cases of ice pellets. The FD12P reports only a small 
number of ice pellets during the field evaluation period. The LPM reports slightly higher numbers. 
The PWD22 reports much higher numbers, but it does not report any other solid precipitation 
types except snow and ice pellets. The other PWSs report no ice pellets events. 

 Snow grains are often reported by the FD12P during dense fog. When the FD12P reports snow 
grains during the field evaluation period the other PWSs generally report no precipitation. Only 
the VPF750 and SWS250 report snow grains, but generally not at moments when the FD12P 
reports it. 

 The FD12P reports hardly any hail or snow pellets. The PWS100 and PWD22 reports no hail or 
snow pellets. The LPM and SWS250 report higher numbers than the FD12P. The VPF750 
reports many more cases than the FD12P and the Parsivel2 reports a very high number of snow 
pellets. 

Overall the PWD22 generally compares best with the FD12P when the scores for the liquid 
precipitation class are considered. The LPM has a better POD as a result of the higher sensitivity, but 
also a higher FAR. The PWS100 and Parsivel2 have poorer POD and FAR compared to the  PWD22, 
but the FAR is better than for the LPM. The VPF750 and SWS250 have the poorest POD and best FAR 
as a result of their low sensitivity. The scores for the solid precipitation class compared to the FD12P are 
best for PWD22. The VPF750, Parsivel2 and LPM  have a slightly worse POD and FAR compared to the 
score of the PWD22. The PWS100 has a poor POD and the SWS250 has a poor FAR. The best overall 
agreement between the PWD22 and FD12P could be expected as the sensors use the same 
measurement technique and are from the same manufacturer. However, the FD12P is not necessarily 
correct. The PWD22 scores deviate more from the FD12P for specific precipitation types, especially 
since the PWD22 reports the fewest number of precipitation types. Also note that the although the 
scores for the liquid precipitation class is generally good, the discrimination between rain and drizzle 
varies largely between the PWSs. 

The precipitation intensity reported by the PWSs is compared to the intensity obtained with a KNMI 
gauge. All PWSs report precipitation intensity, but only the Parsivel2 and LPM are calibrated for intensity. 
The precipitation accumulation of the PWD22 and Parsivel2 are close to that of the gauge. The FD12P 
and LPM reports more and the PWS100 reports less accumulated precipitation. The VPF750 and 
particularly the SWS250 give a large underestimation of the accumulated precipitation. The distribution 
of the differences is narrowest for the PWD22, followed by LPM and PWS100, and the FD12P. The 
distribution is broadest for the VPF750, SWS250 and Parsivel2. For light precipitation intensities the POD 
and FAR for PWD22 and FD12P are best and the POD is worst for PWS100. The LPM has the best 
scores for medium precipitation intensities. Large differences between the precipitation intensity reported 
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by the PWS and the gauge occur for all PWS. The precipitation intensity of the LPM agrees, within the 
WMO uncertainty limits of ±0.1 mm/h or ±5 %, with the gauge about 60 % of the time. For the SWS250 
agreement is reached 31 % of the time. For other PWSs the agreement with the gauge is between 38 
and 45 %. 

The MOR of the PWSs is compared to the reference MOR obtained by a transmissometer, which is 
only valid up to 2 km. The MOR reported by the PWS100 is too low over its entire MOR range. The MOR 
of the PWD22, VPF750 and SWS250 compare equally well with the TMM for fog. The FD12P has a 
slightly better POD, but the FAR is much worse due to a bias. For MOR between 800 and 1500 m the 
FD12P and PWD22 agree better with the TMM than the VPF750 and SWS250. There is no reference for 
large MOR values. There are systematic differences between the MOR reported by the PWSs. The 
scatter between the MOR values is large due to the temporal variability of MOR. Limiting the MOR to 20 
km gives the best agreement with the MOR of the FD12P, within the WMO uncertainty limits, for the 
PWD22 (86 %). For the VPF750 and SWS250 agreement is reached 78 % and 79 % of the time. The 
agreement for MOR of the PWS100 is only 30 % due to the negative bias. Note that these scores are 
dominated by the cases with good visibility. The MOR reported by VPF750 and SWS250 sometimes 
show spikes with reduced MOR values during clear days while the TMM and other PWSs show no 
features in the MOR. The MOR obtained by all forward scatter sensors can be reduced when flying 
insects pass the measurement volume. The TMM is generally not affected by flying insects. The insect 
events occur during calm days in summer/autumn around sunset. 

The results for the temperature of the PWSs are generally as could be expected from the location of 
the temperature sensor. The VPF750 and PWS100 use a separate temperature sensor in a radiation 
screen and agree best with the temperature of the AWS. The LPM has an external temperature sensor 
directly underneath the PWS and is third best. The PWD22 and SWS250, with the temperature sensor 
built into the PWS, have the worst agreement with the AWS. The temperature of all PWSs, except 
SWS250, is on average higher than that of the AWS. The VPF750 and PWS100 agree, within the WMO 
uncertainty limits of ±1 °C, with the AWS temperature about 99 % of the time. For the LPM1 and PWD22 
agreement is reached 71 % and 68 % of the time, respectively. The agreement  for temperature of the 
SWS250 and LPM2 is only 27 and 42 % due to the negative and positive bias, respectively. The best 
overall agreement of the temperature does not necessarily mean that the scores for the class 
temperature below zero is also the best. Also note that the temperature of any PWS can deviate several 
degrees from the AWS temperature at certain moments. 

The field evaluation of the PWSs has not yet completed. The field test is ongoing and will include the 
next winter season of 2016/2017. The analysis of the data also requires further refinement. Therefore, no 
preferred PWS, considering the specific requirements and conditions in the Netherlands, has been 
identified at this moment. The preliminary results will be shared with the manufacturers and their 
feedback and/or optimizations will be taken into account. The results so far indicate that some problems 
KNMI experiences with the FD12P might be mitigated by other PWSs, but some new issues arise for 
specific sensors. At this moment no PWS seems to be able to solve all shortcomings of the FD12P while 
introducing no new issues. We take this opportunity to close with three more general observations: 

1. Sensors should provide access to raw data of the physical quantities that are observed so that 
these quantities can be validated. It should be possible (by the manufacturer) to reprocess the 
raw data in order to optimize the sensor output. 

2. PWSs should not only provide its best evaluation of the precipitation type, but it should also give 
information on the probability that each type could have occurred. This is essential quality 
information for the user. It also allows the user to further improve the precipitation type 
information using the output of the PWS in combination with information from other sources. 

3. The MOR obtained by forward scatter sensors can be reduced by insects flying through the 
measurement volume. The MOR obtained by transmissometers is generally not affected by flying 
insects due to the larger measurement volume. Users; be aware that this problem can occur at 
locations / conditions favourable to flying insects. Manufacturers; please investigate whether the 
MOR reported by your forward scatter sensor is affected by flying insects and try to overcome 
this. As far as we know the FD12P was the only PWS that has firmware (1.92S) to filter out the 
spikes in the scattered signal due to flying insects (but not precipitation) before calculating the 
MOR. Obviously observations 1 and 2 facilitate handling this issue. 
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