PRIMER: THE LABORATORY NOTEBOOK

WHAT IS THE PURPOSE OF A LAB NOTEBOOK?

Record keeping is an essential part of the scientific process. The laboratory notebook is the primary medium for keeping these records -- facilitating the recording of a range of different activities, crucial to doing effective science. First and foremost, it serves as a record of precisely what one did (both successfully and unsuccessfully) during the course of one's experiment. Furthermore, information in the notebook is essential to corroborating anything that ultimately ends up being published. Effective record keeping practice is a skill that requires substantial time to cultivate to a point where your records will be suitable for a research lab, so it's important to start developing this skill early.

WHAT TYPES OF INFORMATION ARE IMPORTANT TO RECORD?

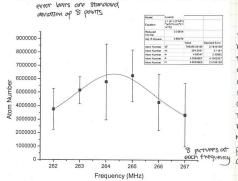
There are a variety of different types of information that researcher's use a lab notebook to keep track of during daily lab activities. This information goes beyond simply recording parameter values and data points. The majority of the information falls under one of the four following categories:

- **Objective information:** This consists of the parameters, settings, and data that result from measurement, alignment, or any other concrete actions taken by the researcher. This type of information is what you may commonly think of as being present in scientific records. One might describe the objective information found in the notebook as the "facts" of the experiment.
- Subjective information: This usually manifests as the researcher's interpretation or evaluation of the events in lab and commonly accompanies the objective information from the experiment. Just because this information contains the opinion of the researcher does not mean that it is "unscientific". For example, researchers spend a great deal of time troubleshooting and redesigning their experimental apparatus in an attempt to improve their measurements by including subjective interpretation of various measurements (e.g. "these data looked unusual" or "it seems like the alignment is bad") the researcher can better recall their impression of prior measurements, and thus are better able to put these in the context of their current understanding of the experiment.
- Analysis information: It is common for analysis to be performed on raw data throughout the
 entire experimental process. Often, this is done in order to directly compare experimental
 results to theoretical models/predictions. Examples include short calculations and plots with
 accompanying fits to models. The information from this kind of analysis is often recorded in the
 notebook alongside the experimental details about the data, which aids the reader in
 interpreting the results.

• Planning information: This consists of future plans or directions for the research. This information can entail both short term/incremental plans (e.g. taking more data, similar to previous measurements but with slightly different parameters) as well as long term/substantial plans (e.g. complete redesigns of experimental apparatus). Researchers are constantly reflecting on and re-conceptualizing the day-to-day outcomes of their experiments; therefore it can be difficult to keep track of new ideas and experimental directions unless they are written alongside other pertinent experimental information.

WHAT'S IMPORTANT TO CONSIDER WHEN RECORDING INFORMATION?

- Context: Understanding the context of a lab notebook entry means understanding the "what" and the "why" of each experimental decision in other words, "what was it that I measured and why did I measure it?" It means understanding each entry in the broader picture of the entire experiment. So, when recording information in your notebook consider if you are able to understand how what you're writing pertains to the experiment as a whole. If you are simply writing down the numbers for each parameter and listing the different data that you've recorded without explaining the reasoning behind the measurements, it is likely you will be unable to make sense of what you've written later on.
- <u>Audience</u>: You are the primary audience of your notebook, but authentic research is done collaboratively, therefore the lab records of an experiment must be available to all the researchers involved. This may include peers in the same research group, one's advisor, or researchers from collaborating research groups. Thus, when writing in your notebook try to imagine how your writing may be interpreted by others. Keep in mind what things you infer or assume, without writing down, and ask yourself whether or not others may be able to make sense of the context of your entry without this information. In the case of your lab class, your audience will also likely include your lab partner and your instructor.
- Timescale: You will find that you may need to reference various pieces of information recorded in your notebook in a week, a month, or in the case of authentic research potentially more than a year from when it was recorded. Of the information you write down, you will never know what you will need and when you will need it, but through experience you will find that some of the information maybe be of more short term importance (e.g. equipment parameters that will be updated in the subsequent few days) whereas other information you may keep coming back to over the course of weeks or months (e.g. a commonly reproduced alignment procedure). It is important to be mindful of this when writing each entry it is good practice to ask yourself "When might I need this?" whenever writing down new information. The farther in the future that may be, the more detail you should include.
- <u>Time investment</u>: The process of keeping lab records is a fine balance between writing enough detail so that your records will be useful in the future and doing so in a time efficient way that does not slow the progress of your experiment. Record keeping is a time intensive part of the experimental process many researchers express that they feel they should be taking more time to write additional information in the lab records that they keep. Very few of them feel


that they spend too much time adding detail to these records. **Do not look at record keeping as** an afterthought to the actual experimental process, but rather as an integral part that will require substantial amounts of your lab time to get right.

LAB NOTEBOOK EXAMPLES

Here we present some examples of notebook records taken from a physics research lab here at CU. The various entries are recorded by several different researchers who are working collaboratively on the project. You will notice that each researcher has a different style and format to their entry, but much of the same information and thought process can be seen in each entry. These excerpts are meant as examples of authentic scientific record keeping and **do not represent a definitive illustration** for how you should maintain your records.

10/5/12 Yesterdays measurements were taken in the MOT load position. When the coils are in that position the 34 waveplate for the verticle MOT beams is right above the Top coil. This Annotations: was causing an eady current that made the magnetic Provides context by referencing the field turn off much slower. After repeating this measurement at the absorption measurements made in the previous imaging location the magnetic field turn app was much more quicken so it looks like the imaging only are not day. This helps to motivate this day's the problem. Also the measured field is pretty close to the calculated field (24 G) work. Compares new measurement to previous measurement and provides interpretation of comparison. 25 Next looked at probe light timung Provides subjective interpretation and imp coils timing to make stre they are nappening at the same 10 of plotted results. time Looks fine Plot is well labeled with axes, units, and legend. 60s N=1.21 × 109 T. = 20.28 decide to try a smaller magnetic field for imaging coils and try to time Clearly states all objective control voltage: 4V B=12 Gauss information pertinent to the 40M1 - 267.8 MHZ and AOM2 - 250 MHz measurements. Finally saw atoms in absorption imaging with imaging coilson! Started tracing out a beam profile with ~sv = 17.8 MHz detuning nowever after 3 different frequencies the probe beam stopped locking above 269 MHZ. At this point I also noticed that the lenses and mirror for focusing the image on the Andor camera were tilted and the beam was not centered on the lenses. Fixed this and decided to move on to imaging with a 24 Gauss field (8V control on img coils). coil control voltage: 8V Brairward = 24 Gauss AOM 2 = 233.0 MHz (held constaint) AOM1 was varied MOT load to 10.5V3 though this could have been higher since the fitted # of Atoms never reachello7 error bars are standard deviation of 8 points 9000000

Preliminary analysis of results, synthesized in well labeled plot and accompanied by evaluation of fitting.

lumally it looked like the image would saturate so I made the MOT load Smaller but this turned out to be too small because the wings of the carentzian were not accessible because there its mostly noise and the program cannot ett to it. This should probably be repeated with either a larger MOT load or once other parameters have been oprimized

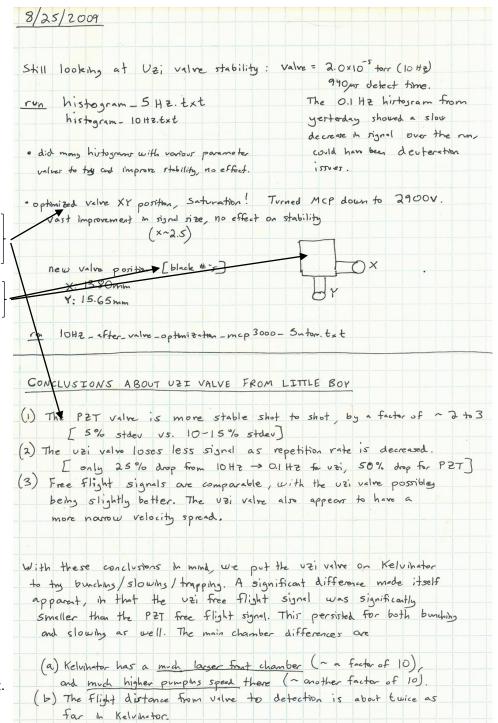
DYcarculated = 33,6 MHz

Magnetic Field Img Coils Control Probe Light

Time (ms)

AV = 17.8 MHz

In this second example of a research notebook, the entry comes after a number of days of attempting to troubleshoot and understand a particular piece of equipment. The researcher has tried a number of different approaches to characterize the behavior of the piece of equipment over this time period. This


entry was written at the conclusion of this process.

Specifies files where results of measurements and analysis can be located.

Describes interpretation of results.

The researcher then synthesizes the results of the previous several days of characterization. This concise description makes the full picture clearer than if one had to read back over all previous entries.

The researcher then goes on to describe the future direction for the experiment.

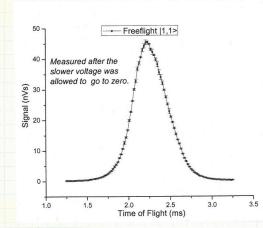
This concise description shows consideration for a broader audience.

Thorough description of process performed during the day and makes clear the comparison with previous day's results.

Speculation about potential cause of observed discrepancy.

Thoroughly labeled plot with all potentially relevant information.

June 7, 2011

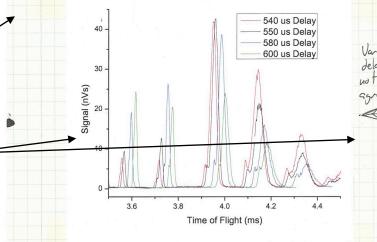

Started by cheeking signal on the first peak of slowing for A=1, detecting |1,1). This peak was down to about IL NUS from I8 NUS yesterday. Switched to slow and detect |1,1) with the new timings and were down to \$32 nus for \$24492 two days ago. Remixed gas and got 10% back, up to \$38 nVs. Tried picomoter scan, found max at exact same location as yesterday (+2.65 mm).

Switched to freeflight of [1,1) and found signal was enormous (>200-Vs).

This was being caused by residual change on the slower acting as a DC guide.

If the slower is not allowed to dischange fully, it can hold change long enough to give erroneous signal values for an entire free flight scan. This may be the cause of the discrepancy, between slowed and free flight signal levels where free flight has been substantially langer. With as little as 100V on the slower, the signal was \$20% higher. After allowing the slower to completely discharge, free flight was about 50 mVs, companed to \$47 mVs.

For slowny, which is much more regionable.



Gas	ND ₃
MCP (V)	-4000
Valve (V)	-461
Valve Temp (°C)	184
Pressure (10 ⁻⁵ Torr)	1.1
TOFMS (V)	1000
Phase Angle (deg.)	
Sirah λ (cm ⁻¹)	31511.5
Wavemeter λ (cm ⁻¹)	15755.51
Laser Power (mJ)	11.9 (Sirah)
Final Velocity (m/s)	
Detect Time (ms)	2.23
Step Size (μ s)	20
Scope Averages	56
Labview Averages	3
Date	6/7/2011

To test if the initial delay was a passible source of diagrament between experiment and simulation, the delay was varied and TOF Spectra were married

Explicitly states the intended test to determine the cause of the discrepancy.

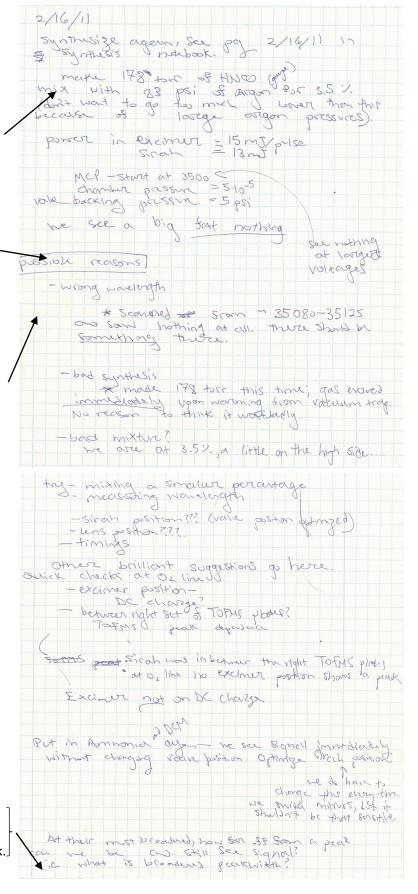
Well labeled plot with interpretation. =

The small powerester was used to check lower at morars, with little charge found from Sirch output to the last minor.

The MCP power supply was changed to check stability, with a change in signal.

After re-optimizing the Sirah, freeflight of [1,1) was down to \$236 from \$50 ember today. And slow/defect [1,1) was down to \$200, Year It earlier today.

The concise synthesis of all tests performed allows for other


researchers to quickly understand results.

Researcher connects the current day's work with previous results so that reader may easily reference and understand the background to the current work ("synthesize again")

Researcher makes it clear that they obtained a null result.

Makes thorough list of hypotheses about the cause of the null result. This list may serve to motivate subsequent days' measurements.

After testing all of their hypothesis the researcher then provides motivation for the direction of the subsequent day's work.

