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Abstract

Time-dependent, rotating flow in a finite depth of fluid is considered. Unbalanced initial condi-
tions initiate flow in a shallow Ekman layer and in the inviscid interior, which is characterized by
a state of zero potential vorticity. To determine the interior flow response to motion forced by the
Ekman layer suction velocitypg, an expansion of the flow to first-order i/2, whereE is the
Ekman number, is carried out. Frontogenesis, which occurs in both the baroclinic and barotropic
parts of the geostrophic flow, modulates the inertial oscillation that enters at zero order. A baro-
clinic front (infinite relative vorticity) can occur in a finite-time, equal to or less than one-half the
period of an inertial oscillationy f ~! These fast-time processes are described in detail by Blumen
(2000).

Spin-up to the quasi-steady Ekman boundary layer solution also occurs during one-half the
period of an inertial oscillation. Thereaftarg varies on a slow-time scalé;—Y2f-1. Yet, a
barotropic front may form in a finite-time if the initial anticyclonic relative vorticity exceeds
f, a condition that favors nonlinear steepening in opposition to boundary layer dissipation. This
analysis contributes to a theoretical understanding of the interplay between spin-down and
frontogenesis in rotating fluid. Some values of the Ekman number, typical of mid-latitude flows,
are introduced to compare theoretical predictions to observed conditions. It is concluded that the
Ekman layer corrections are most likely smaller in magnitude than the magnitude of errors in cur-
rent atmospheric wind measurement systems, and therefore, not verifiable. Oceanic flows are also
difficult to measure at the required accuracy, and other processes compete with Ekman layer dis-
sipation to explain slow-time spin-down in the oceans. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Inertial oscillations are fluid motions in level planes that are characterized by a period
7 (£2 sing)~! wheres2 is the Earth’s rotation rate angidenotes latitude. They are exact
solutions of the equations of incompressible fluid motion when the pressure gradient and
viscous forces are either small or balance each other. Viewed from a rotating frame, the
velocity vector rotates in an anticyclonic or clockwise direction in the Northern Hemi-
sphere, tracing out a circle (an inertial circle) during one period of the oscillation. Since
these oscillations represent an exact solution of the equations of motion, they should be
prominent in both atmospheric and oceanic data records in regions where both the pres-
sure gradient and viscous forces are either negligible, or where the latter two forces are in
balance.

Inertial oscillations have been observed below the surface mixed layer in the oceans and
above the stable shallow nocturnal boundary layer of the atmosphere on many occasions.
A particularly notable demonstration of the inertial oscillation in the ocean is displayed in
Fig. 1. Warsh et al. (1971) show a power spectrum of motions at a depth of 25 min the ocean
near Barbados (I8l), where the inertial period is 52 h. Evidence for inertial oscillations in
atmospheric data has also become established, e.g. Mori (1990) and Ostdiek and Blumen
(1997). There have, however, been difficulties in extracting these oscillations from more
data records for two principal reasons: firstly, the sampling rate of available instrumentation
has not been adequate to resolve the oscillation (e.g. twice daily radiosonde soundings of
the atmosphere) and, secondly, their contribution to power density spectral representations
blendsin with the diurnal spectral peak when atmospheric data are taken£e20°N. The
observational facilities that provide sufficient temporal resolution are now largely in place:
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Fig. 1. Power spectrum of current speed at a depth of 25 m near Barbadh3 {d3the period 2 July to 13 August
1968. The inertial oscillation period is approximately 52 h (after Warsh et al. (1971)).
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Fig. 2. Hodograph of an atmospheric inertial oscillation observed at 0.192 km with the Argonne Boundary-Layer
Facility 915 MHz wind profiler at Whitewater, Kansas. The inertial period at this latitude is 19.5 h. The inertial
oscillation takes place around steady-state wind valuesset 3.76 ms ™, vss = 12.61 ms™1, with an amplitude

of 4.19ms . The hours marked on the plot are in local daylight time (LDT): the inertial oscillation lasted from
17.00h LDT on 11 October 1999 to 10.00 h LDT on 12 October 1999.

currentmeters used in ocean studies, and radar wind profilers for atmospheric investigations.
Fig. 2 depicts an inertial oscillation observed with a UHF radar wind profiler.

Although observations of atmospheric inertial oscillations have increased recently (Singh
etal., 1993; Banta et al., 1998), their sources are still being explored. The source of inertial
oscillations in large bodies of water is largely accepted to be associated with winds that
exert a stress at the air—ocean interface, and with the passage of storms and accompany-
ing fronts that impart energy to the mixed layers of the oceans and large lakes (Kundu
and Thomson, 1985; Tandon and Garrett, 1994). Other mechanisms are noted by Kunze
and Sanford (1984), but will not be pursued here. A mechanism to excite inertial oscilla-
tions in the atmosphere was proposed by Blackadar (1957). It requires the development
of a very stable layer close to the ground in association with radiative cooling in the late
afternoon and early evening. The top of this layer, situated at a heighttO0 m, caps
the layer where turbulent stresses are significant. Above this capping inversion lies the
residual layer, a neutrally-stable convectively-mixed layer that is still present after the
heat flux changes sign near sunset. The residual layer can accelerate if other constrain-
ing forces, like turbulent stresses, are absent. This method of initiating inertial oscilla-
tions in the residual layer up to 1-1.5km has been reproduced in the model studies of
Thorpe and Guymer (1977) and Singh et al. (1993), among others. These studies are, how-
ever, not definitive because their models are built upon the Blackadar mechanism: inertial
oscillations are assumed to occur in the residual layer. In contrast, Ostdiek and Blumen
(1997) have documented the occurrence of inertial oscillations during the passage of a
weak cold front in the Southern Great Plains, when the atmosphere was neutrally strati-
fied from the ground up to a height of several hundred meters. Inertial oscillations were
detected by means of boundary-layer profilers and surface observations, and were even
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evident at the 10 m level at a number of locations. Low-level mixing by surface winds,
associated with the frontal progression, appears to have prevented the development of the
nocturnal stable layer during this event. Frontal initiation of inertial oscillations is sug-
gested.

The possibility of inertial oscillations that co-exist with frontal passages raises some in-
teresting dynamical consequences. Balanced models, such as the semigeostrophic model,
are often used in mesoscale atmospheric and oceanic studies because they appear to capture
relatively realistic atmospheric frontogenesis without having to expend additional compu-
tational resources on a primitive equation model. A principal question that arises concerns
the relative contribution of inertial oscillations to both the inception and decay of a front,
called frontogenesis and frontolysis.

Blumen (1997) showed that inertial oscillations could be modulated by semigeostrophic
frontogenesis, but the reverse process was not attainable by the method of analysis em-
ployed. A zero-potential-vorticity (ZPV) model was employed later by Blumen (2000)
to establish that there is a significant interaction between inertial oscillations and fron-
togenesis. In fact, the relevance of this model of frontogenesis was demonstrated ear-
lier by Blumen et al. (1996) in application to a frontogenesis event in the Great Plains.
In that event, the frontal width decreased from a few tens of kilometers to a few hun-
dred meters within a period of about 3 h. Dissipation of turbulent kinetic energy within
the frontal zone prevents the development of a temperature or wind discontinuity, and
ultimately frontolysis takes over. Sanders (1999) recently provided an analysis of fron-
togenesis in the Southwestern United States that exhibited similar spatial and temporal
characteristics, but he did not carry out any model study to evaluate the impact of inertial
oscillations on frontogenesis. The essence of this nonlinear interaction will be reviewed
below.

The purpose of the present study is to extend the work presented in Blumen (2000)
to include an Ekman boundary layer. The basic equations and a brief summary of the
mathematical approach is provided in Section 2. Next the linear, time-dependent Ekman
boundary layer solution is introduced, and the Ekman suction velocity is determined in
Section 3 and Appendix A. The analysis of frontogenesis when an Ekman suction veloc-
ity provides a lower boundary condition is taken up in Section 4. The analysis follows
very closely the approach provided by Greenspan (1990), in the reissue of his 1968 edi-
tion. As might be anticipated, the development is one of spin-up of the boundary layer
from a state of rest until a quasi-steady Ekman boundary layer is achieved, and the in-
terior motion reveals a secondary circulation in response to the presence of the Ekman
layer. Then the barotropic part of the basic state geostrophic flow spins down, leaving the
baroclinic part of the geostrophic flow and modulated inertial oscillations intact. A sum-
mary of the principal conclusions, and some remarks on geophysical relevance, appear in
Section 5.

The emphasis in this study is placed on frontogenesis, and particularly on the role of the
Ekman boundary layer in its development. This aspect of the spin-up and spin-down problem
has apparently not been emphasized in previous studies. The intention is to examine this
problem in geophysical settings, albeit very ideal ones, in order to establish the various time
scales that are appropriate to oceanic and atmospheric situations, and to provide insights
into frontogenesis when non-steady inertial oscillations and the boundary layer play a role.
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2. The inviscid model

The inviscid model, which represents the basic state dynamics, has been presented by
Blumen (2000), hereafter BL. The Ekman layer enters at first-order in an expansion in
terms ofEY/2, whereE is the Ekman number. The Ekman layer is placed below the inviscid
interior flow for atmospheric applications; it may be placed above the inviscid interior flow
for oceanic applications. This alteration does not change any of the physical interpretations
that are presented. The plan is to introduce the model equations, apply the absolute mo-
mentum coordinate transformation, which eliminates some nonlinear terms, solve a linear
problem in coordinate space, and then return to physical space for clearer interpretation of
the solution. Along-front variability is observed, in both oceanic and atmospheric fronts, to
be negligibly small §/3y ~ 0) in comparison with rapid changes in both the temperature
and wind fields that occur across the frontal zone. As a consequence, the basic equations
are those of two-dimensional, inviscid and rotating flow with the Boussinesqg approximation
applied. These equations, representing the horizontal equations of motion, hydrostatic bal-
ance, continuity and conservation of potential temperature (replaced by temperature under
the Boussinesq approximation) are expressed as

2—?+u§—u+wz—z—fv=—2—z, 1)
g—?+ug—;+wg—2—fU=O, (2)
O=—88—Z+g%, (3)
9 0 9 0 9 6

260 “ax80 " Vaze0 O ©)
where(u, v, w) are velocity components in thg, {/, 2) directions,d/dy =0, 7 = p/p(0)

(p is the pressure and(0) the reference density)/6(0) the ratio of the temperature to a
reference temperaturgthe acceleration of gravity, and the Coriolis paraméieconstant.
The reference values(0) andd(0) refer to values at the level between the inviscid layer
and the Ekman layer. Absolute momentum coordinates

X =x+v/f, Z=z, T =t (6)

are introduced into Egs. (1)—(5). The motions are constrained by the assumption that the
potential vorticity is set equal to zero for purposes of mathematical simplification. This
condition is equivalent ta(6/6(0))/0Z = 0. A desirable property of this system, which
is evident from (2), is the conservation Xffollowing the motion. The relative simplicity
of the transformed set of equations, and ease of interpretation, is a by-product of this latter
conservation principle. The transformation to absolute momentum coordinates yields

IT oy

a_T wa_Z — fUa = O, (7)
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whereu, denotes the ageostrophic component, and vg + v, is composed of both a
geostrophic and an ageostrophic component of motion. The complete development appears
in BL, particularly in Appendix A. Geostrophic and hydrostatic balance, not displayed
above, will be developed further. Geostrophic balance is represented by

vg=f— (12)

and hydrostatic balance by (3). Transformation of Egs. (11) and (3) by means of (6) (or see
Hoskins (1975)) yields

_q 011 —or gf
1
= —, = — _—, 12
v =/ "% VAREIO) (12)
where

vé

These results are in agreement with the transformed variables displayed by Hoskins (1975),
who used the geostrophic coordinate transformation, (6), wigplaced bygy. Agreement

with geostrophic coordinates in the in the representation of Egs. (12) and (13) occurs
because the horizontal pressure field is completely represented by geostrophic balance.
The ageostrophic flow and the accelerations in Egs. (7) and (8) are unaffected by both
the pressure gradient and viscous forces. Inertial oscillations are described by this system
of equations, but not internal gravity waves, as a consequence of the ZPV assumption. It
follows from ZPV and (10) tha#/0(0) is only a function ofX. As a consequence, the two
expressions in (12) may be combined to yield the baroclinic part of the geostrophic velocity,
provided by

~_ 890 0 (h
v= f8X9(0)<2 Z)’ a4

where the flow is confined to a channel,<0 Z < h. The barotropic part ofgy will be
represented as
10 -
v=——1I1I. (15)
fox
Both 6/6(0) and the barotropic pressure figlfl need to be specified. Periodic boundary
conditions are used, as in BL, to insure that there is no net horizontal mass flux, although (14)

already satisfies this condition because its vertical average vanishes. The initial conditions
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appropriate to this model are
ua=w=vg+va=0 T =0, (16)

wherev, = 0 + v. The zero-order baroclinic part of the flow may be determined from
Egs. (7)—(9) withw = 0 at the level boundaries (). This solution will only be considered,
however, at = Z = 0. Approximate interior solutions have been presented in BL, but they
need not be considered in the present analysis. The exact solutions that satisfy Eqgs. (7), (8)
and (16) aZ = O are

v = v(1 — cosfT)
ua=—osinfrT }, (7)
w=0~0

wheret is given by (14).

The most significant aspect of this solution, for present purposes, is the fact that (17)
represents the solution in physical space Witleplaced byt andv = v(x,?) atz = O.
Thus, the zero-order solution is represented by a modulated inertial oscillation superposed
on a baroclinic geostrophic flow, which evolves on a fast time scale. The barotropic part of
the geostrophic flow evolves on a slow time scale, much longer than one inertial period. This
development is deferred until Section 4.3. It will also be shown in Section 4 that barotropic
frontogenesis takes place in thgfield, but that there are differences between baroclinic
and barotropic frontogenesis.

3. The boundary layer model

A multitude of time-dependent Ekman boundary layer solutions appear in the literature.
The solution presented by Pandolfo and Brown (1967) represents the appropriate model
solution for this study. This solution (19) satisfies the initial conditions (16) and approaches
the steady-state Ekman boundary layer solution:

u—}—iv:ivg{l—exp[—(l—i—i)(Si:“ (18)
E

whenzis finite and: — oo. This limiting solution (18) is actually approached within less
than one inertial period, and the barotropic parvgivaries on a slow time scale, to be
introduced below. The solution is represented by

. 1 "2 z (ft\7Y? (Y2
u+|v=§|vg exp[(l+z)E} erfc ﬂ(i) +(1+z)(§>
.\ Z z (ft\ V2 N
+exp[—(1+l)gi| el’fC|:§E (§> — (1+l) <§>
. ()72 .
+|Ug |:1 - erf <§E (E) ) eXFX—|ft):| , (19)
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where erf¢y) = 1 — erf(y) is the complementary error function and
12 [T 2
erf(y) = 2n Y / e " dr (20)
0

is the error function (Gautschi, 1964). The paraméteiis the Ekman layer thickness,
defined aseg = (2« f~1)1/2, wherex is a constant eddy viscosity coefficient. Characteristic
values for the atmosphere and the oceans will be introduced in Section 5. Itis only necessary
at this time to require that /2 = sgh~! « 1 in this channel model. At infinite height, the

top of the boundary layer, the solution is characterized by

u+iv — ivg(l —exp(—ift)), z— oo (22)

which is in agreement with (17) whéhis replaced by.
Integration of the continuity Eq. (4) through the depth of the boundary layer provides the
Ekman suction velocity

8E dvg ft\Y2  exp(—ft/2) .
~——|erf| = —————=(1— cosft — sinft) | . 22
wB . [er <2> + 271(ft/2)1/2( cosft — sinft) (22)

The development appears in Appendix A, anglis shown as a function of time in Fig. 3.
The time scale for spin-up to the asymptotic value

(SE aUg

wg = ——,
B 2 ox

is less than the period of one inertial oscillation, in approximate agreement with the results
presented by Greenspan (1990, Fig. 2.3). To summarize, the time-dependent solution (18)
asymptotically matches the interior solution at the base of the upper fay€d, Exchange
between the interior fluid and the boundary layer will take place-at0, where (22) will
serve as a lower boundary condition for the boundary layer correction to the zero-order
inviscid solution (17).

(23)

4. Spin-up, spin-down and frontogenesis

Greenspan (1990) has provided a clear physical discussion and mathematical formulation
of the spin-up and spin-down process. The specific model is one that is realizable in a labo-
ratory setting, although his presentation would be applicable to geophysical environments
as well (see, in particular, Chapter 2 and Section 3.7).

The presentapproach, asin Greenspan’s development, is to define a zero-order basic-state,
modify the basic-state, and display the secondary interior circulation in response to the
boundary layer transport at the base of the interior fluid layer. As he notes, “the proce-
dure continues until the mutual interactions of the interior and boundary layer flows are
determined to the desired accuracy.”

Frontogenesis and the forced secondary circulation are clearly evident when the solution
is terminated at orddfY/?, whereE is the Ekman number. As in Greenspan’s development,
each contribution to the solution will be examined separately. The distinction is made
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Fig. 3. Ekman suction velocityg (solid line) as a function of nondimensional tifitgorovided by (22). The velocity
has been normalized by its asymptotic valug = (5g/2)dvg/dx. The short-dashed line is the representation of
wp by the first term in (22), and the long-dashed vertical link is 2.

between motions that occur on a fast-time sgale f~! and those that evolve on a
slow-time scale ~ E~Y2 =1 whereEY? « 1.

4.1. Fast-time: zero-order

The zero-order, fast-time solution is presented in (17). It is composed of a geostrophic
flow, the baroclinic part, and superposed inertial oscillations that are both characterized by
orderf~1 variation. The barotropic part of the geostrophic flow varies on a slow-time scale,
and so is effectively constant on this fast time-scale, and may be omitted. The easiest way
to display the fast-time variation of the geostrophic flow is to repladsy t in (17) and
substitute this solution into either Eq. (1) or (2). The result, developed in BL (Section 4), is
a nonlinear advection equation for the baroclinic part of the geostrophic flow (14), given by

0 0
— —9— ) 0=0, (24)
ot 0x
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wherer = f~1(1— cosft). The time-scale for frontogenesis may be determined from (24),
as in Lighthill (1978, Section 2.9). Differentiation of (24) with respecktnd rearrange-
ment produces

A —1 A —1
PSR LA W I U WY (25)
ot ox 0x dr \ ox

Steepening ob occurs by nonlinear self-advection, afd/dx may become infinite at

T = tT¢. Integration of (25) from = r = 0 tot yields
1

f=1a0/8xlo’

where the right hand side of (26) is evaluated at r = 0. The maximum value of the

left hand side of (26) is 2, so that a frof>/d.x) = oo can only form if the initial relative

vorticity satisfiesf ~190/dx|o > 0.5; otherwise a front will not form. Frontolysis occurs in

the intervalr < ft < 2. Frontal development is displayed in BL. The present formulation

can only proceed if a front does not form, otherwise the solution cannot be extended past

t = tc. For present purposes, the fast-time zero-order solution will be represented as a

baroclinic geostrophic flow that alternately undergoes frontogenesis and frontolysis on a

fast-time scale, and a modulated inertial oscillation. The possibility of symmetric instabil-

ity of this flow has been raised by Tandon and Garrett (1994) but, as shown in BL, this

possibility is excluded because the potential vorticity cannot become negative.

1 — cosfte = (26)

4.2. Fast-time: first order

An appropriate ordering of the solutions is facilitated by introduction of nondimensional
scales. The following apply:

x=xrx', z=hZ, t=FY, @) =EnYu v,
w=fhw', 6/6(0) =060

The primed variables are nondimension@l,is a characteristic amplitude of the initial
temperature field:

g'=g0. A=@nYt

andse is defined below (20). The prime notation will now be dropped. The Ekman suction
velocity (22) may be written as

wg = EYV22 2% (), 27)
2 0x
where
\Y?  exp—t/2) _
F(l) = erfc (§> — W(l — COSst — S|nt). (28)

Spin-up to the asymptotic valueg = 1/2E1/28vg/ax is a fast-time process as noted in
Section 3, withF () — 0 over a characteristic intervak 7 f 1.
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4.3. Slow-time: first-order

The slow-time evolution ofy remains to be determined. The geostrophic velocity is a
zero-order variable, but it is necessary to proceed to the first-order equations to determine
the barotropic slow-time evolution. A two-time scale expansion is an appropriate method
to pursue, sinc& represents the ratio of the rotation period to a characteristic diffusion
time. Since the fast-time processes have already been isolated, it is preferable to follow
Greenspan’s (1990, Section 3.7) approach, and simply rescale the time in order to isolate
the slow-time variation. That i$s now scaled as= E~1/2 1.

The analysis is simplified by first exploiting the simplification provided by the use of
absolute momentum coordinates. The same nondimensionalization is applied to the trans-
formed variables, and the solution expanded as

Uy = El/zual+...
v="10+ EY2014--- }. (29)

The zero-order flow with this new scaling is the barotropic part of the geostrophic flow

aIl
b= (30)

wherev is now the nondimensional representation of (15). Although the baroclinic part of the
geostrophic flowis independent of time in transformed space according to Egs. (14) and (10),
the fast-time variation of the baro clinic geostrophic flow is revealed in the transformation
back to physical space (24). The baroclinic part of the geostrophic flow and the inertial
oscillations do not appear at zero-order with the deployment of the slow-time scale. Egs. (8)
and (9) are ordeEY/? representations, which may be expressed as

av

5T +ua1=0, (31)
a a av

— R i [ =0 32
ax"t 57 ( ax) wr=s (32)

where the prime notation is retained here as a remindeffthiata slow-time variable. On
this time-scale, the Ekman suction velocity at 0, represented by (27), does not retain the
fast-time representatidf(t), given by (28). It may be expressed in transformed variables as

av 10v

1- — =-—, Z=0 33
( ax) VB = 2ex” (33)

whered/ox = (1—9v/9X)~19/9X andv is evaluated by to leading order. The slow-time

behavior ofv is determined from (31) aftery1 is determined. As in BL, the relative sim-
plicity of Egs. (31) and (32) may be exploited further by introduction of two new variables

u* =ugy

v (1 Y | @
X
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which were firstintroduced by Hoskins and Draghici (1977). Then Egs. (31) and (32) reduce
to

av

3T +u* =0, (35)
ou* ow*

=0. 36
X + 1Z (36)
Integration of (36), noting that = w* = 0 at the level boundar¥ = 1, yields

a [t 199
2 wrdz=wrx,0,7) = 222, 37)
X Jo 20X

wherew* is expressed by the right hand side of (33), the slow-time Ekman representation
in transformed coordinates. It is only the barotropic part of the geostrophicofiow31)
that evolves on the slow-time, so thatmust be barotropic and, from (37)

u* = %E(X, 7. (38)
Introduction of Eq. (38) into Eq. (35), followed by one integration, yields
b =1(xo)e /2 (39)

whereX = xg atT’ = 0. The barotropic part of the geostrophic flow spins down at a rate
EY2£/2. This spin-down rate is a well-known result, e.g. Greenspan (1990). The fact that
frontogenesis occurs simultaneously has apparently not been recognized.
The secondary circulation may also be determined. The vertical velocity is determined
from Egs. (36) and (38), and expressed as
10v
=2 __(1-2 40
T (40)
Both uy1 andwi may be determined from (34), sina&w*, andv have been determined.
Streamlines of the secondary circulation, represented by Eqgs. (38) and (40) in transformed
space, will be presented in Section 5.

4.4. Spin-down and frontogenesis

The final steps in this analysis are to return to physical space and to interpret the barotropic
slow-time response. One way is to evaluate (2) using the physical space representation of
Ua1 andwq, obtained from Egs. (34) and (40). The more direct route is to note that (39)
provides

av 1
= —-. 41
o1~ 2" (“41)
The reverse transformation is found from

90 0v v\ v
aT' At ox ) T’
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wherex = X — v from the nondimensional form of (6). Rearrangement yields

a0 AN
7= (1+ 5) el (42)

Now Egs. (41) and (42) may be combined to yield an equation for the barotropic geostrophic
velocity in physical space. The dimensional representation of this equation is

v 1_9v  f_

R T T 4

oz " 2'x T2 =0 (43)
where? = EY? will be used in the developments that follow. Eq. (43) expresses the
slow-time evolution ofv: it describes nonlinear steepening (frontogenesis), as in (24), that
is opposed by linear damping (spin-down). This equation has been analyzed by Whitham
(1974, Section 2.12). Pedlosky (1987, Section 4.3) has shown that the rate at which
energy is supplied¥ , to maintain the asymptotic-state of the Ekman layer against frictional
dissipation is, in the present units

. 72
W= fp<0><7>, (4)

where () denotes a volume average. He notes that, since the pressure is the same in the
interior as in the Ekman layer, the rate of energy loss in the interior is (44) with the sign
reversed. Multiplication of (43) by(0) and integration ovex for this barotropic flow
provides

=2

9 ) 2
E'O(O) <E>= —fp(0)<?>, (45)

which is the energy loss in the interior.
According to Whitham’s (1974, Section 2.12) analysis, (43) may be expressed as
d_f
@2
where d/dt = v/2 (further development is by the method of characteristics). The equiv-
alent representation of (46) is the conservation of absolute linear momentum

7=0, (46)

%(ﬁ +x) = 0. (47)

Fluid parcels move outward and away from the point of fluid injection into the interior,
and the cyclonic circulation decreases to satisfy (47). Downward injection of interior fluid
into the Ekman layer requires a decrease in the anticyclonic circulation as the rotation axis
is approached. Finally, the interplay between nonlinear advection and dissipation may be
displayed by rewriting (47) as

B(x, T) + X = 9(x0) + fXo. (48)

wherexg designates th&-coordinate representation &t= 0. This expression (48) rep-
resents a desired relationship between the coordinate positiand xg after v(x, 7) is
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expressed in terms af(xp). This latter relationship is provided in nondimensional terms
by (39). Transformation to dimensional units and introduction into (48) provides

x =x0+ f o)L — e /T3, (49)

wherert is defined below (43). Andrews and Hoskins (1978) have shown that a discontinuity
will occur at7 = 7c(dv/dx = oo) whendx/dxg = 0. This latter condition determines
the time 7, whenx ceases to be a single-valued functionxgf In the present case, the
discontinuity or front will occur at = 7 given by

1—exp[_ftc] - t (50)
2 F10v/dx0]

where frontal formation is restricted to anticyclonic fléw,/dxg < 0. Further, alarge initial
anticyclonic vorticity is required to produce a froftp /dxg| > f, because frontogenesis

is occurring as the fluid spins down.

Itis interesting to contrast frontogenesis that occurs on different time scales. It is demon-
strated in BL that the fast-time inertial oscillation collaborates with nonlinear self-advection
to accelerate frontogenesis during the first half-cycle of the oscillation,f0< =. The
initial cyclonic vorticity need only exceeff? for a front to form, as established by (26). In
contrast, frontogenesis on the slow-time scale has to overcome the damping effect of Ekman
dissipation to produce a front. Relatively large initial anticyclonic vorticities are required,
|0v/dxo| > f,to permit this to occur as established by (49). An evaluation will be provided
in Section 5. The reason that frontogenesis is associated with geostrophic vorticities of op-
posite sign is related to the divergence field. Convergence, associated with positive relative
vorticity, produces a front at the pressure minimum, in which low density fluid overlies high
density fluid. Alternatively, interior flow forced by the Ekman suction velocity produces
convergence at the pressure maximum, where the relative vorticity is negative and where
fluid is removed from the interior to supply divergent motion in the Ekman layer. The latter
type of frontogenesis is a barotropic process.

5. Summary and remarks

The analysis procedure outlined atthe beginning of Section 4 has been carried out, restrict-
ing attention to ordeE'/2 effects produced in the interior flow by the presence of the Ekman
boundary layer. Ekman layer suction provides the offéf <« 1 correctionsto (17) and, as
a consequence, the boundary layer solution (18) only matches the interior flow at zero-order
as shown by (21). The iterative process noted by Greenspan (1990), whereby the mutual
interaction between the boundary layer and interior flows are matched to a higher degree of
accuracy, is not carried out. The principal conclusions of this study, frontogenesis during
spin-down, are stated at the end of Section 4, and details of the fast-time, baroclinic response
are provided in BL. The complete solution, to or@f?, is represented in physical space by

v = vg(1 — cosft), (51)

. 18g _
ua = —vgsinft 4+ >3 0 (52)
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Fig. 4. Streamlines of the first-order ageostrophic flow in physical spack(*z), wherek is thex-wavenumber

of the barotropic geostrophic flow, ardis the channel depth. The top and bottom panels are, respectively,
F718%5/0x0] = (0.5,0.95). The left- and right-hand side panels are, respectively, tifines 0 andft = 20.
Downwelling occurs in the vicinity okx = 0.

w1=———_(h—z) (53)
X

where the ordesg/h terms are determined from Egs. (34), (38) and (40) and transformed
to physical space. The baroclinic part of the geostrophic velocity in Egs. (51) and (52) is
determined by (24), and the barotropic part by (43). The streamlines for the ageostrophic flow
(ua1, w1) are shown in Fig. 4 for the case of a cyclic representatica,—V sinkxy where

V denotes the amplitude akds thex-wavenumber. According to the present development,



234 W. Blumen, J.K. Lundquist/Dynamics of Atmospheres and Oceans 33 (2001) 219-237

1
0.5

<l

<l

Fig. 5. Barotropic geostrophic flow, normalized by exp(fEY/2t/2) vs. the nondimensional coordinate The
top and bottom panels are, respectivgly}|95,/dxo| = (0.5, 0.95). The times arefEY/?: = 0 (solid), 2 (dotted),
4 (dashed), 6 (dashed-dot).

the inertial oscillation, in Egs. (51) and (52), is set up from the onset by the specification of
unbalanced initial conditions. The oscillation is modulated by both a fast-time baroclinic
flow and a slow-time barotropic flow. The frontogenetic properties of the barotropic flow
are displayed in Fig. 5. The increase in the gradieni &f a consequence of convergent
cross-isobar ageostrophic flow, displayed in Fig. 4. The use of alinear Ekman boundary layer
solution becomes less valid as this nonlinear interior process proceeds. The tendency for
frontogenesis in anticyclonic flow would, however, not change when a nonlinear correction
to the Ekman suction velocity is incorporated. Hart (2000) has shown that the magnitude
of the suction velocity increases in anticyclonic flow, but that the direction of the forced
secondary flow is unaltered.

Although a finite frontal-width is approached &s= EY/?s increases, the amplitude of
v is essentially zero wheyit/2 = 3. A typical value ofEY/2, which characterizes mid-
latitude atmospheric motions, 181/2 ~ 10~1, with the Ekman deptég ~ 300— 450 m
(Holton, 1992, Chapter 5). A typical oceanic valugi§2 ~ 102 or less, withSg < 10m
(Cushman-Roisin, 1994). According to (39), the e-folding tintes,= 2E~2 -1 are,
respectively, 2—3 days for the atmosphere, and 3 weeks or longer for the oceans. Little
evidence for spin-down should be apparent during the period from dusk to dawn in the at-
mosphere. As noted earlier, spin-down opposes frontogenesis. According to (50), relatively
large initial values of anticyclonic vorticity are required to produce frontal formation in a
finite time; the occurrence of frontal formation at the e-folding time for example, requires
|av/dxo0| f~1 & 1.6. Anticyclonic relative vorticities of this magnitude would not normally
be observed in mesoscale atmospheric flow, because negative absolute vorticity is expected
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to be an unstable state, e.g. Holton (1992, Section 7.5). The secondary circulation, on the
other hand, spins up according to (22) and Fig. 3 during the first half-cycle of the inertial
period. Values otiy; andwg would have typical atmospheric values

16 1

~ ~ ~ —1
Ugl ~ Eﬁvg ~ z_) x 10~ 0.5ms -,

wg ~ %SE% ~ % x 400 x % x 1074~ 10?ms L.
The secondary circulation would be very difficult to measure with radar wind profilers,
for example, because it would be swamped by the wind measurement errors. Although the
velocities would increase with a decreasd,ithe spin-up time would also increase, and
the circulation would become obscured by convective activity after sunrise. Spin-up and
spin-down are important fluid dynamical constructs upon which to gain insights about the
effects of the planetary boundary layer on interior fluid motions. It is, regrettably, difficult
to evaluate either the short- or long-term effects on atmospheric motions, at least through
Ekman layer dynamics. The oceans may offer more suitable conditions for boundary layer
influences to be evaluated. Inertial oscillations may persist for several days, since diurnal
variability is a relatively insignificant factor in the oceans, e.g. Warsh et al. (1971) and
Pollard (1980). Their diminution, following a storm or frontal passage, is most likely a
combination of at least three factors: frictional dissipation, horizontal energy dispersion,
in which the amplitude decays like® (Whitham, 1974, Chapter 11) and vertical energy
dispersion to underlying stratified layers where the energy is carried away by internal wave
motions (Bell, 1978). The decay rates calculated for the latter process by Bell are about
double the decay rates associated with the presence of the Ekman layer. Related work on
vertical energy dispersion from frontal regions has also been reported by Wang (1991) and by
Klein and Treguier (1993), although their models differ from the present one. Nevertheless,
the fact that there are competing physical processes proposed to explain energy loss from
oceanic oscillations presents a challenging analysis problem.
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Appendix A. Ekman suction velocity

The vertical velocity at the top of the Ekman layer, found by integration of the continuity
equation, is

Dg
wp = —/ du dz, (A1)
0
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wherew = Oatz = 0 andDg ~ w g is essentially the depth of the Ekman layer. The bound-
ary layer solution (19) consists of two contributions. The first two expressions provide the
Ekman boundary layer response, consisting of cross-isobaric flow. The second contribution,
contained in the third expression, provides the expression at the top of the boundary layer
(18), which matches the inviscid solution (17) in the upper layer. Neither the geostrophic
flow nor the inertial oscillation provide Ekman layer convergence, which contributes to a
finite wg in EQ. (A.1). The ageostrophic departure from this latter contribution is used to
evaluate Eq. (A.1).

The contributions from these integrals are aided by the use of the complementary error
function erf¢y) = 1 — erf(y), where erfcy) is defined by (20). Then the contribution from
the first integral is

1 .
I = 5(1 _ l')[e(1+t)DE/5E —1]

/DE/6E+(1+i)ft
(

~1
exp[=2ift + (1 + i)n] erf Q(E) dn, (A.2)
1+i)ft 2\ 2

wheren = z/8e + (1 + i)ft. The integral in (A.2) is provided in Gautschi (1964, 7.4.36).
Evaluation at the two limits yields

1 .
I = 5(1 _ l-)[e(1+l)DE/5E _ 1]

1 . 1 /ft\ Y2/ De
—Z(1—i (1+i) De/Se il YE .
2(1 l){e erf[2 (2) <5E +(1+z)ft)

et 22 (5) | e @ (5)) ”3)

The second integral, found from (A.1) and (19), is evaluated similarly and is given by

1 .
Ir= _5(1 _ l‘)[e*(1+l)DE/5E —1]

1 : 1 /ft\"Y? /De

LI —(1+i)Dg/$ L/t De .
+2(1 1){e E/OE arf |:2 (2> <5E (1+l)ft>

it | De (fO\ Y2 L (f\?

Considefft finite andDg/8g — oo. The asymptotic expression (Gautschi, 1964; 7.1.23) is
introduced into (A.3) and (A.4) with the result that (A.1) reduces to

Sg 0 ft\ /2
wgwﬂ%gg(lwﬁ)erf |:(1+i) (5) } (A.5)

Finally, the error function in (A.5) is evaluated by means of Gautschi (1964, 7.1.29) to give
(22).
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